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Satellite thermal control ensures safe operating temperature ranges for satellite 
components throughout the mission life. Effects of altitude, spin, and position of satellite 
radiator(s) on the thermal control of a small Low Earth Orbit (LEO) satellite have been 
studied. Results show that change in satellite altitude, in the range considered here, does 
not produce critical thermal conditions. However, satellite spin rate has a marked 
influence on the satellite temperatures. Also, comparison of results for the satellite 
configurations considered in this study suggests that a radiator at top provides better 
thermal design conditions. Results also indicate the adequacy of the discussed 
considerations for use in the design of satellites of similar configurations, missions and 
orbital parameters. 
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Nomenclature12 

A area 

Ci heat capacity of node i 

Fi-j view factor from node i to node j 
G radiation conductor (defined in the text) 

K material conductivity 

Qi heat  dissipation of node i 

intQ
 

total heat dissipated by the electronic components 

 (internal heat dissipation) 

T temperature 

α absorptance 

β beta angle (defined as the angle between 

 the orbit plane and the sun vector) 
ε emittance 

σ Stefan-Boltzmann constant 

a albedo 

hot hot 

i, j node indicators 

int internal 

ir infra red 

max maximum  
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s-s satellite to space 

DoD Depth of Discharge  

GM
M

Geometrical Mathematical Model  

LEO Low Earth Orbit 

RPO Revolution Per Orbit  

SIN Systems Improved Numerical Differencing 
TD Thermal Desktop  

TMM Thermal Mathematical Model  

Introduction 

The duty of satellite thermal control system is to 
maintain the temperatures of satellite components and 
surfaces within allowable limits throughout the 
satellite mission. Active and passive thermal control 
methods are used for this purpose, which differ in 
some of the thermal hardware and control strategies 
they use to achieve the required thermal control action. 
However, the passive method is preferable, when 
simplicity, cost and reliability are the key design 
considerations [1, 2]. The passive thermal control is 
affected by parameters such as beta angle (the smaller 
angle between the sun vector and the plane of the 
satellite orbit), satellite altitude, satellite spin rate, and 
the position of the satellite radiator(s) [3]. These 
parameters must be considered in the thermal design 
process. However, there is little information in the 
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mounted solar arrays [11-15] have shown the effect of 
spin rate on temperature distributions. Petrof [11] 
studied the effect of spin in minimizing the temperature 
peaks in a rotating vehicle. He concluded that, with 
increase in the rate of satellite spin, the extreme points 
of the surface temperature shift in the direction of the 
rotation, besides diminishing both maximum and 
minimum temperature values. In the limit, when the 
spin approaches infinity, the temperatures everywhere 
approach the average temperature of the vehicle as 
required by thermodynamic equilibrium. For example, 
for a cylindrical satellite spinning with the sun normal to 
the spin axis and having body mounted solar panels 
with solar absorption to infrared emittance ratio ( / ) of 
nearly 1.0, the satellite will run around the room 
temperature [1]. Therefore, as reported by Gadalla [15], 
spinning of the satellite as it orbits the earth results in 
reduction in the overall temperature on the external 
surfaces of the satellite. This is especially important in 
the case of body mounted solar panels, because the rate 
of power production by the solar cells, as shown in 
Figure 2, is affected by their working temperatures [9-
17].  

In this paper, the satellite has been analyzed at 
several spin rates: RPO=1, 3, 5, and 10. The No Spin 
condition (RPO=0) and Quick Spin condition 
(RPO= ) also have been analyzed as the limiting 
cases. For all the spins, temperatures of the satellite 
solar panels, considered as representative surfaces, 
have been obtained to show the effect of spin rate on 
the satellite temperatures.  

Satellite Radiator(s) Position(s) 

The external surfaces of a satellite radiatively couple 
the satellite to the deep space. These surfaces, known 
as radiators, are also exposed to external sources of 
energy such as direct solar, albedo (reflected solar flux) and 
Earth-emitted IR. Therefore, their radiative properties must 
be selected so that an energy balance at the desired 
temperature, between the satellite internal heat dissipation, 
external sources of heat, and re-radiation to space, is 
achieved. Radiators are given surface finishes, such as 
white paints with high infrared emittance (  > 0.8) and low 
solar absorptance ( <0.2), to maximize heat rejection from 
the radiators, while limiting the absorbed heat loads from 
the surroundings [10].  

The heat removal can be arranged through one 
centralized radiator (all dissipated heat going to one 
centralized radiator) or several individual radiators, 
distributed in the satellite. For satellites with 3-axes 
stabilization, the choice of zone(s) for radiator(s) 
location(s) depends on the satellite orientation along 
its orbital movement. Hence, important issues that the 
satellite thermal designer must address pertain to 
determining the optimum position(s) of the radiator(s) 
on the satellite and estimating their size [3].  

 
(a) 

 
(b) 

 
(c) 

Fig. 2 Temperature effects on (a) short circuit current (b) 
open circuit voltage (c) maximum power of solar cells [9] 

 
In order to size the radiator(s), the information on 

the satellite orbital positions, in relation to sun, is of 
great importance. The thermal designer must 
determine the paths, followed by the satellite during 
the course of the satellite mission, along which the 
impinging fluxes are the lowest and do not vary 
significantly. Regions that are mostly perpendicular to 
or shaded from the solar vector are candidate locations 
for placing the radiator(s). Other surfaces may have to 
be insulated to reduce the effects of exposure to space. 
These locations are also preferred from the viewpoint 
of improved predictability.  

For an isothermal space facing radiator, with 
dissipating components mounted on its back (see Figure 
3), the area A (one side) that will keep the temperature 
Thot  Tmax, where Thot is the hot case temperature and 
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Effects of Some Parameters on Thermal Control of  a LEO Satellite 

 
(a) 

(b) 

Fig.7 The satellite in its orbit: (a) =60o, (b) =90o 

 

Table 1. Temperature limits of main satellite components 
 

Unit Operating 
Range (ºC) 

Non-operative 
Range (ºC) 

Solar Panels -50 , +120 - 

Battery Pack -10, +25 -20, +40 

Electronic Box 
(E-Box) -10, +50 -40, +80 

Telemetry Units -5, +50 -50, +50 

Structure -80, +80 - 

 
Standard software SINDA/FLUINT [21] and 

Thermal Desktop [22] are used in this study for the 
purpose of thermal modeling and analysis. The 
transient thermal analysis is performed through 
implicit forward-backward differencing given as: 
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            (6) 

where: 
n

jT  = temperature of node j at the current time t 

1n
jT  = temperature of node i at the next time tt  

jiG  = linear conductor attaching node j to node i  

jiG  = radiation conductor attaching node j to node i  

iC  = thermal capacitance of node i  

iQ  = source/sink for node i 

In effect, the above finite difference equation uses 
the average of the temperature derivatives at the 
current and next time to predict the overall temperature 
change. and next time to predict the overall 
temperature change. This method is second order 
accurate in time and first order accurate in space [22]. 

Results and Discussion 
Effects of Beta Angle and Altitude 
In this section, effects of variation in orbit altitude, 
from 500 to 1000 km, and beta angles, from 0 to 90º, 
on satellite temperatures are presented for a nadir 
pointing satellite. 

Figure 8 shows the variations in the temperature 
of the top satellite surface at various altitudes and 
different  angles. As shown, the top surface 
temperature does not vary significantly with increase 
or decrease in satellite altitude. This is mainly because 
this surface faces the zenith, which means for all  
angles, it only receives solar radiation: no Earth IR 
or albedo radiations are received by this surface. In 
addition, the amount of solar radiation depends only 
on  angle. Therefore, increase in altitude from 700 
to 1000 km has little effect on the amount of solar 
radiation received by this surface. The top surface, 
being parallel to the direction of solar rays at = 
±90º, receives no solar radiation, and hence, it 
reaches very low temperatures. However, at =0º, 
the top surface receives the maximum amount of solar 
radiation during day time (the lighted part of the orbit), 
and attains its highest temperature at this angle. At 
0º< <±90º, the solar radiation received by the top 
surface gradually decreases, resulting in a downward 
temperature trend as illustrated in Figure 8.  

 
Fig. 8 Temperature variations of the top surface at various 

altitudes and different  angles 
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Effects of Spin Rate 
Figure 18 shows the limiting case of Zero Spin 
(RPO=0), in which a side facing the sun is heated to 
high temperatures (>125 ºC), and the other three sides 
receive no solar heat flux, and hence, are at very low 
temperatures (<-80 ºC). The case of zero spin presents 
the worst thermal condition, as all the solar panels 
must endure severe thermal states. 

 

 
Fig. 18 Temperatures of solar panels, the no spin limiting 

case (RPO=0) 

 

Solar panels temperature variations at RPO=1 and hot 
orbital case are shown in Figure 19. Here, the four 
solar panels show similar temperature variations, and 
the minimum temperature has increased to about -55 
ºC, while the maximum temperature has decreased to 
about 115 ºC. However, the temperatures of the solar 
panels are still far from satisfactory. 

 

 
Fig. 19 Temperatures of solar panels at RPO=1 

 

Figure 20 shows the remarkable improvement in the 
temperature conditions for RPO=3. The temperature 
range is now between -14 ºC to 78 ºC.  
Solar panels temperature variations at RPO=10 and hot 
orbital case are demonstrated in Figure 21. It is 
important to note that further increase in spin rate 
ultimately results in the limiting case of infinite spin 

rate (RPO= ). Temperatures of the four solar panels 
for the limiting case of quick spin (RPO= ) are shown 
in Figure 22. In addition, the variations in the 
temperature of a single solar panel at various spin rates 
are depicted in Figure 23. As shown, in the case of 
quick spin, the maximum and minimum temperatures 
vanish, and the temperatures of the solar panels reach a 
value close to that of room temperature. 

 

 

Fig. 20 Temperatures of solar panels at RPO=3 

 
 

Fig. 21 Temperatures of solar panels at RPO=10 

 

Fig. 22 Temperatures of solar panels for limiting case of 
quick spin (RPO= ) 
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The top surface radiator configuration results in 
lower temperatures as compared to the bottom 
surface configuration, and therefore, it could be the 
preferred configuration for small satellites with 
similar shapes and mission requirements. 
Comparison of the results with flight temperatures 
results reported by other researches indicates the 
adequacy of the discussed considerations for use in 
the design of satellites of similar configurations, 
missions and orbital parameters. 
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