نویسندگان

1 مهندسی هوافضا، سازمان صنایع هوافضا، تهران، ایران

2 دانشکدة مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

بهینه‌سازی مشارکتی یکی از روش‌های بهینه‌سازی طراحی چندموضوعی دو سطحی است،‌ که از سطح سیستم و سطح موضوع تشکیل شده و در حل مسائل پیچیدة مهندسی کاربرد دارد. به‌دلیل همگرایی سخت این روش در سطح موضوع و به علت نویزی بودن قیود سطح سیستم از طرفی و لزوم مینیمم‌کردن تابع هدف در سطح سیستم از طرف دیگر؛ در این روش بهینه‌سازی، طراح، ناگزیر از استفاده از الگوریتم‌های تکاملی به‌منظور مینیمم‌کردن تابع هدف در سطح سیستم است. بنابراین، ثابت شده است که به‌کارگیری این الگوریتم‌ها با توجه به ماهیت مربوطه بسیار پرهزینه و زمان‌بر است. در این مقاله، با بررسی انجام شده، نحوة جدیدی از به‌کارگیری الگوریتم‌های بهینه‌سازی ابداع شده است که با استفاده از آن در حل مسائل نمونه، نتایج خوبی حاصل شده است. نشان داده شده است که با استفاده از این شیوه تعداد فراخوانی تابع یا زمان حل مسئله و به تبع آن هزینةمحاسبات به‌طور محسوسی کاهش خواهد یافت. همچنین نشان داده شده است که این شیوه بعضاً باعث افزایش دقت نیز خواهد شد.

کلیدواژه‌ها

عنوان مقاله [English]

Combining Gradient and Evolutionary Algorithms for Improving Collaborative Optimization Performance

نویسندگان [English]

  • Hossein Darabi 1
  • Jafar Roshanian 2

1 Aerospace Engineering, Aerospace Industries Organization, Tehran, Iran

2 Faculty of Aerospace Engineering, Khajeh Nasir al-Din Tusi University of Technology, Tehran, Iran

چکیده [English]

Collaborative optimization is one of bi-level multidisciplinary optimization methods which consists of system level and discipline level and is applied for complex engineering problems. since this method is rigidly convergent at discipline level because of noisy constraints at system level on one hand and minimizing objective function necessity at system level on the other hand, this optimizationmethod is forced to use evolutionary algorithms in order to minimize objective function at system level, also, It has been proved that, applying this algorithms according to their nature is expensive and time consuming. This paper with performed inspections is a new method for applying innovated optimization algorithms through which considerable results are obtained in solving sample problems. It is shown that using this method will decrease function calls number or problem solving time and therefore calculating costs will decrease considerably. Also it is shown that this method sometimes increase accuracy.

کلیدواژه‌ها [English]

  • Multidisciplinary design optimization
  • evolutionary algorithms
  • Simulated Annealing
  • Gradient based algorithms
  1. Brown, , Evaluation of Multidisciplinary Optimization (MDO) Techniques Applied to a Reusable Launch Vehicle, AE 8900 Special Project Report, April ‌2004.
  2. Chen, X., Yan, L., Luo, , Xu L., Zhao, Y. and Wang, Zh., “Research on Theory and Application of ‌Multidisciplinary Design Optimization of Flight Vehicles,” 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2006.
  3. Balling, R.J. and Sobieszczanski-Sobieski, J., “An Algorithm for Solving the System-level Problem in Multilevel Optimization,” Springer (Technical Papers), 9, Issue 3-4, 1994, pp 168-177.
  4. Balling, R.J. and Sobieszczanski-Sobieski, J., Optimization of Coupled Systems: a Critical Overview of Approaches, NASA Langley Research Center Hampton, VA 23681-0001, Operated by Universities Space Research Association, 1994.
  5. Cramer, E.J., and et al., “Problem Formulation for Multidisciplinary Optimization,” SIAM Journal on Optimization, 4, Issue 4, 1994, pp. 754-776.
  6. Alexandrov, N.M. and Lewis, R.M., “Comparative Properties of Collaborative Optimization and Other Approaches to MDO,” Institute for Computer Applications in Science and Engineering NASA Langley Research Center, MCB University Press, 1999.
  7. Zang, T.A. and Green, L.L., “Multidisciplinary Design Optimization Techniques Implications and Opportunities for Fluid Dynamics Research,” 30th AIAA Fluid Dynamics Conference Norfolk, 1999.
  8. Arora, S. and Wang, Q., “Review of Formulations for Structural and Mechanical System Optimization,” Structural and Multidisciplinary Optimization, 30, Issue 4, 2004, pp. 251-272.
  9. Hashemi, M,. Darabi, H. and Roshanian, J., “Comparison Between Traditional Method (Statistical Method) and Multidisciplinary Optimization Method (AAO) in Designing of a Lightweight Liquid Propellant LV,” Journal of Space Science & Technology (JSST), Vol. 5, No. 1, (10), Spring, 2012, pp 61-75.
  10. Braun, R. and Kroo, I., “Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment,” Multidisciplinary Design Optimization: State of the Art, (Technical Report), SIAM, 1995, pp. 98-116.
  11. Braun, R., “Collaborative Optimization: An Architecture for Large-Scale Distributed Design,” [PhD Thesis], Stanford University, 1996.
  12. Balling, R.J. and Sobieszczanski-Sobieski, J., “An Algorithm for Solving the System-Level Problem in Multilevel Optimization,” Structural Optimization, Vol. 9, No. 3, 1995, pp. 168-177.
  13. Ming, L., “A Study on the Multidisciplinary Design Optimization (MDO) using Collaborative Optimization Method,” [PhD Thesis], Shipbuilding and Marine Engineering Department, Pusan National University, South Korea, 2000.
  14. Scott, A.T., “An Evaluation of Three Commercially Available Integrated Design Frame Work Packages for use in the Space Systems Design Lab,” Submitted Dr. John Olds, 2001.
  15. Braun, R., Moore, A. and Kroo, I., “Use of the Collaborative Optimization Architecture for Launch Vehicle Design,” In 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Bellevue, WA, USA, 1996.
  16. Brown, N. and Olds, R., “Evaluation of Multidisciplinary Optimization Techniques Applied to a Reusable Launch Vehicle,” Journal of Spacecraft and Rockets, 43, No. 6, 2006, pp. 1289-1300.
  17. Besnard, E., Cordier-Lallouet, N., Kural, O. and Chen, H.P., “Design Optimization With Advanced Simulated Annealing,” (AIAA 99-0186), 37th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 1999.
  18. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. “Optimization by Simulated Annealing,” Science, Vol. 220, No. 4598, 1983, pp. 671-680.
  19. Dr´eo, J., P´etrowski،, Siarry, P. and Taillard, E., Meta Heuristics for Hard Optimization, Springer-Verlag Berlin Heidelberg, 2006.
  20. Zeeshan, Q., Yunfeng, D., Rafique, A.F., Nisar, K. and Kamran, A., “Meta-Heuristic Approach for the Conceptual Design and Optimization of Multistage Interceptor,” 18th World IMACS/MODSIM Congress, Cairns, Australia, 2009.
  21. Freund, R.M., Penalty and Barrier Methods for Constrained Optimization, Massachusetts Institute of Technology, 2004.
  22. Wah, B.W., Chen, Y. and Wang, T., “Simulated Annealing with Asymptotic Convergence for Nonlinear Constrained Optimization,” Journal of Global Optimization, Vol. 39, Issue 1, 2007, pp. 1-37.