نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشجوی دکتری، گروه زیست شناسی ، واحد دامغان ، دانشگاه آزاد اسلامی ، دامغان ، ایران

2 استادیار، پژوهشکده علوم و فناوری زیستی ، مجتمع شیمی و مهندسی شیمی، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 استادیار، گروه زیست شناسی ، واحد دامغان ، دانشگاه آزاد اسلامی ، دامغان ، ایران

چکیده

هدف از انجام تحقیق حاضر بررسی بیان تعدادی از ژن‏ها به منظور ارزیابی اختلالات ناشی از تغییرات فشار در فضانوردی و غواصی در بیماری رفع فشار بود. این تحقیق بر روی 5 غواص ماهر انجام شد و سطح بیان ژن‏های TLR-2 ,HSP-72, IL-1b, NF-kBو MPO که مسئول شرایط پیش التهابی می ‏باشند و همچنین سطح بیان ژن‏های شاخص فضانوردی یعنی DRD4 و BNIP3 بر روی نمونه‏های بومی ایرانی مورد تجزیه و تحلیل قرار گرفت. نمونه خونی نیم ساعت پس از انجام غواصی گرفته شد، RNA آنها استخراج و cDNA سنتز شد. با استفاده از آغازگرهای اختصاصی، واکنش‏های PCR real-time انجام شد. آنالیزهای آماری T-Student نشان داد که سطح بیان تمام ژن‏‏ها به جز ژن‏‏های MPO و TLR-2 پس از قرار گیری در تغییرات فشار و فعالیت‏های غواصی افزایش چشمگیری داشته است. این تغییرات می‌تواند به عنوان شاخصی برای افراد سالم تحت استرس فشار در فضا نوردی و همینطور در غواصی در نظر گرفته شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of Changes in the Expression Level of some Genes Involved in Decompression Sickness in the Pressure Changes

نویسندگان [English]

  • Ehsan Siami 1
  • Reza Mohammadi 2
  • Vajiheh Zarrinpour 3

1 Ph.D. Student,‎, Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran

2 Assistant Professor‎, Department of Bioscience and Biotechnology, Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran

3 Assistant Professor‎t, Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran

چکیده [English]

This study evaluates the expression level of genes that change by pressure changes in astronautics and diving disorders such as decompression sickness. This study was performed on five skilled divers to analyze the expression level of TLR-2, HSP-72, IL-1b, NF-kB, and MPO genes that are responsible for pro-inflammatory conditions. In addition, the expression level of DRD4 and BNIP3 genes (Astronaut index genes that were previously measured in a spacecraft study on mice) was analyzed on native Iranian samples. Blood samples were taken half an hour after diving, RNA was extracted, and cDNA was synthesized. Then, real-time PCR was done. Based on the results obtained using the T-Student statistical method, it was found that the expression level of all genes except MPO and TLR-2 genes increased significantly after exposure to pressure changes and diving activities. These conditions can be a permanent effect after pressure changes and can be considered an indicator for healthy people under stress in diving and astronautics.

کلیدواژه‌ها [English]

  • Gene expression
  • Decompression sickness
  • pro-inflammatory
  • Astronautics
  • Primer
  • Real-time PCR
  • Pressure changes
[1]  P.P., Foster, and B.D. Butler, "Decompression to altitude: assumptions, experimental evidence, and future directions," Journal of Applied Physiology, Vol. 106, No 2, pp.678-90, 2009
[2]  J. Conkin, H.G. Sung, and A.H. Feiveson, "A latent class model to assess error rates in diagnosis of altitude decompression sickness," Aviation, space, and environmental medicine, vol.77, no.8, 2006, pp. 816-24.
[3]  R.D. Vann, F.K. Butler, S.J. Mitchell, R.E. Moon "Decompression illness", The Lancet, vol. 377, no. 9760, pp.153-64, 2011,.
[4]  S.L. Jersey, R.T. Baril, McCarty RD and Millhouse CM. "Severe neurological decompression sickness in a U-2 pilot," Aviation, space, and environmental medicine. vol. 81, no. 1, pp. 64-8, 2010
[5]  S.I. Ranapurwala, N. Bird, P. Vaithiyanathan, P.J. Denoble, "Scuba diving injuries among Divers Alert Network members 2010-2011," Diving Hyperb Med, vol. 44, no. 2, pp. 79-85, 2014.
[6]  S.R. Thom, M. Bennett, N.D. Banham, W. Chin, D.F. Blake, A.Rosen, N.W. Pollock, D. Madden, O. Barak, A. Marroni, C. Balestra, "Association of microparticles and neutrophil activation with decompression sickness," Journal of Applied Physiology, vol. 119, no. 5, pp. 427-34, 2015.
[7]  E.A. Montcalm-Smith, R. McCarron, W. R. Porter, R. S. Lillo, J. T. Thomas, and C. R. Auker, "Acclimation to decompression sickness in rats," Journal of Applied Physiology, vol. 108, pp. 596-603, 2010.
[8]  S. R. Thom, M. Yang, V. M. Bhopale, S. Huang, and T. N. Milovanova, "Microparticles initiate decompression-induced neutrophil activation and subsequent vascular injuries," Journal ofApplied physiology, vol. 110, pp. 340-351, 2011.
[9]  N. S. Barteneva, E. Fasler-Kan, M. Bernimoulin, J. N. Stern, E. D. Ponomarev, L. Duckett, et al., "Circulating microparticles: square the circle," BMC cell biology, vol. 14, pp. 1-21, 2013.
[10] E. Spisni, C. Marabotti, L. De Fazio, M. C. Valerii, E. Cavazza, S. Brambilla, et al., "A comparative evaluation of two decompression procedures for technical diving using inflammatory responses: compartmental versus ratio deco," Diving and hyperbaric medicine,vol. 47, p. 9, 2017.
[11] S. R. Thom, "Oxidative stress is fundamental to hyperbaric oxygen therapy," Journal of applied physiology, vol. 106, pp. 988-995, 2009.
[12] L. A. Madden and G. Laden, "Gas bubbles may not be the underlying cause of decompression illness–The at-depth endothelial dysfunction hypothesis," Medical hypotheses, vol. 72, pp. 389-392, 2009.
[13] A. Ersson, M. Walles, K. Ohlsson, and A. Ekholm, "Chronic hyperbaric exposure activates proinflammatory mediators in humans," Journal of applied physiology, vol. 92, pp. 2375-2380, 2002.
[14] I. Eftedal, M. Ljubkovic, A. Flatberg, A. Jørgensen, A. O. Brubakk, and Z. Dujic, "Acute and potentially persistent effects of scuba diving on the blood transcriptome of experienced divers," Physiological genomics, vol. 45, pp. 965-972, 2013.
[15] I. Eftedal, A. Jørgensen, R. Røsbjørgen, A. Flatberg, and A. O. Brubakk, "Early genetic responses in rat vascular tissue after simulated diving," Physiological genomics, vol. 44, pp. 1201-1207, 2012.
[16] A.-L. Paul, A. C. Schuerger, M. P. Popp, J. T. Richards, M. S. Manak, and R. J. Ferl, "Hypobaric biology: Arabidopsis gene expression at low atmospheric pressure," Plant Physiology, vol. 134, pp. 215-223, 2004.
[17] E. G. Overbey, W. A. da Silveira, S. Stanbouly, N. C. Nishiyama, G. D. Roque-Torres, M. J. Pecaut, et al., "Spaceflight influences gene expression, photoreceptor integrity, and oxidative stress-related damage in the murine retina," Scientific reports, vol. 9, pp. 1-12, 2019.
[18] C. K. Ferrari, P. Souto, E. L. França, and A. C. Honorio-França, "Oxidative and nitrosative stress on phagocytes’ function: from effective defense to immunity evasion mechanisms," Archivum immunologiae et therapiae experimentalis, vol. 59, pp. 441-448, 2011.
[19] J. Vinten‐Johansen, Z. Q. Zhao, M. Nakamura, J. E. Jordan, R. S. Ronson, V. H. Thourani, et al., "Nitric Oxide and the Vascular Endothelium in Myocardial Ischemia‐Reperfusion Injury a," Annals of the New York Academy of Sciences, vol. 874, pp. 354-370, 1999.
[20] B.K. Pedersen, T. C. Akerstrom, A. R. Nielsen, and C. P. Fischer, "Role of myokines in exercise and metabolism," Journal of applied physiology, vol. 103, pp. 1093-1098, 2007.
[21] X. W. Mao, M. J. Pecaut, L. S. Stodieck, V. L. Ferguson, T. A. Bateman, M. Bouxsein, et al., "Spaceflight environment induces mitochondrial oxidative damage in ocular tissue," Radiation research, vol. 180, pp. 340-350, 2013.
[22] T. J. Corydon, V. Mann, L. Slumstrup, S. Kopp, J. Sahana, A. L. Askou, et al., "Reduced expression ofcytoskeletal and extracellular matrix genes in human adult retinal pigment epithelium cells exposed to simulated microgravity," Cellular Physiology and Biochemistry, vol. 40, pp. 1-17, 2016.
[23]   R. Zhao, Y. Chen, W. Tan, M. Waly, A. Sharma, P. Stover, et al., "Relationship between dopamine‐stimulated phospholipid methylation and the single‐carbon folate pathway," Journal of neurochemistry, vol. 78, pp. 788-796, 2001.
[24] R. M. Graham, D. P. Frazier, J. W. Thompson, S. Haliko, H. Li, B. J. Wasserlauf, et al., "A unique pathway of cardiac myocyte death caused by hypoxia–acidosis," Journal of Experimental Biology, vol. 207, pp. 3189-3200, 2004.
[25] D. A. Kubli, M. N. Quinsay, C. Huang, Y. Lee, and A. B. Gustafsson, "Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion," American Journal of Physiology-Heart and Circulatory Physiology, vol. 295, pp. H2025-H2031, 2008.
[26] T. Yamashima, "Hsp70. 1 and related lysosomal factors for necrotic neuronal death,"Journal of neurochemistry, vol. 120, pp. 477-494, 2012.
[27] A. Ciechanover and Y. T. Kwon, "Protein quality control by molecular chaperones in neurodegeneration," Frontiers in neuroscience, vol. 11, p. 185, 2017.
[28] M. A. Febbraio, A. Steensberg, C. P. Fischer, C. Keller, N. Hiscock, and B. K. Pedersen, "IL-6 activates HSP72 gene expression in human skeletal muscle," Biochemical and biophysical research communications, vol. 296, pp. 1264-1266, 2002.
[29] P. L. Moseley, "Exercise, stress, and the immune conversation," Exercise and sport sciences reviews, vol. 28, pp. 128-132, 2000.
[30] R. Walsh, I. Koukoulas, A. Garnham, P. Moseley, M. Hargreaves, and M. A. Febbraio, "Exercise increases serum Hsp72 in humans," Cell stress & chaperones, vol. 6, p. 386, 2001.
[31] S. S. Welc, N. A. Phillips, J. Oca-Cossio, S. M. Wallet, D. L. Chen, and T. L. Clanton, "Hyperthermia increases interleukin-6 in mouse skeletal muscle," American Journal of Physiology-Cell Physiology, vol. 303, pp. C455-C466, 2012.
[32] M.-C. Gomez-Cabrera, E. Domenech, and J. Viña, "Moderate exercise is an antioxidant: upregulation of antioxidant genes by training," Free radical biology and medicine, vol. 44, pp. 126-131, 2008.
[33] J. H. Boyd, M. Divangahi, L. Yahiaoui, D. Gvozdic, S. Qureshi, and B. J. Petrof, "Toll-like receptors differentially regulate CC and CXC chemokines in skeletal muscle via NF-κB and calcineurin," Infection and immunity, vol. 74, pp. 6829-6838, 2006.
[34] H. Zbinden-Foncea, J.-M. Raymackers, L. Deldicque, P. Renard,and M. Francaux, "TLR2 and TLR4 activate p38 MAPK and JNK during endurance exercise in skeletal muscle," Medicine and Science in Sports and Exercise, vol. 44, pp. 1463-1472, 2012.
[35] A. Mardi, S. Meidaninikjeh, S. Nikfarjam, N. Majidi Zolbanin, and R. Jafari, "Interleukin-1 in COVID-19 Infection: Immunopathogenesis and Possible Therapeutic Perspective," Viral immunology, vol. 34, pp. 679-688, 2021.
[36] T. N. Pitanga, L. de Aragão França, V. C. J. Rocha, T. Meirelles, V. Matos Borges, M. S. Gonçalves, et al., "Neutrophil-derived microparticles induce myeloperoxidase-mediated damage of vascular endothelial cells," BMC cell biology, vol. 15, pp. 1-10, 2014.
[37] R. Tian, Y. Ding, Y.-Y. Peng, and N. Lu, "Inhibition of myeloperoxidase-and neutrophil-mediated hypochlorous acid formation in vitro and endothelial cell injury by (−)-epigallocatechin gallate," Journal of Agricultural and Food Chemistry, vol. 65, pp. 3198-3203, 2017.
[38] F. Sipos, I. Fűri, M. Constantinovits, Z. Tulassay, and G. Műzes, "Contribution of TLR signaling to the pathogenesis of colitis-associated cancer in inflammatory bowel disease," World journal of gastroenterology: WJG, vol. 20, p. 12713, 2014.
[39] A. Sureda, J. M. Batle, X. Capó, M. Martorell, A. Córdova, J. A. Tur, et al., "Scuba diving induces nitric oxide synthesis and the expression of inflammatory and regulatory genes of the immune response in neutrophils," Physiological Genomics, vol. 46, pp. 647-654, 2014.
[40]         A.Sureda, J.M. Batle, X, Capó, M. Martorell, A. Córdova, J.A. Tur, A. Pons, "Scuba diving induces nitric oxide synthesis and the expression of inflammatory and regulatory genes of the immune response in neutrophils," Physiological Genomics, vol. 46, no.17, pp.647-54, 2014.