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Abstract 

This paper presents a new control methodology based on Continuous Time Delay Petri 

Nets (CTDPN) tool for the attitude control of satellite simulator. The graphical and 

mathematical features of this tool help the expert designer to design an appropriate 

controller using graphical model easily, and then apply the necessary changes to the 

mathematical model. In this approach, the controller gains are derived from the states and 

some other variables. Thus, the system states and variables must be available. The new gain 

tuning algorithm consists of three stages. First, a simulation environment is made for 

mathematical modeling based on the CTDPN tool and controller design. Secondly, using 

optimal methods, the controller gains are calculated at any given time and the data are 

collected. Finally, using the database, a relationship between the set of variables and the 

gains are derived. Experimental results indicate the promising performance of the 

controller in comparison to the conventional controller applied to the satellite simulator 

platform. The results indicate that the designed controller is robust against variation of 

parameters, as the controller gains are tuned based on the system state and variables. 

Keywords: Attitude control, CTDPN, Stability analysis, Gains tuning, Satellite simulator platform 

Introduction 

The development of satellites requires an attitude control 

system. Attitude control is the process of controlling the 

orientation of an aerospace vehicle with respect to an inertial 

frame of reference. One of the most important tools for 

testing control algorithms and investigating the performance 

of attitude control subsystem is the air bearing satellite 

simulator [1]. Creating motion conditions in three axes in a 

nearly frictionless environment  similar to the outer space is 

one of the most important features of this simulator, which 

makes it possible to simulate control rules for a satellite. 

This platform allows designers to test the sent command, 

tools and control algorithms, where in this way, the design 

cost is minimized and the reliability increases. This 

simulator includes the main platform, sensors, power 

supply, processor, actuator of attitude control, and data link. 

One of the actuators widely used in satellites is reaction 

wheels. Actuators used for satellite attitude control include 

reaction wheel, magnetic torque, thrusters etc. [2]. Magnetic 

actuators have the ability to generate relatively high power, 

quick responses, and high accuracy. It is necessary to ensure 

correct performance of actuators in satellite control, 

therefore, satellite simulators can be very useful. 

The attitude control in satellites is performed by 

three reaction wheels; however, usually four reaction 

wheels are used with three of them being active while the 

fourth wheel is redundant [3]. Due to the nonlinear 

dynamic nature of the reaction wheel, it is difficult to 

design a controller. On the other hand, because of the use 

of brushless DC motors in the reaction wheel, this 

subsystem claims the requires more energy compared to 

other subsystems. Therefore, a controller design to 

reduce the energy consumption is essential and effective 

[4]. Some methods to control satellite using reaction 
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wheels have been designed. In [1], [5] and [6], 

optimization approaches including the linear–quadratic 

regulator (LQR), the Linear–quadratic–Gaussian 

control(LQG), and loop transfer recovery (LTR) have 

been applied to reaction wheels for reducing energy 

consumption and stabilizing satellite. In [7], an 

intelligent method to tune the gains has been used in 

which the gains are obtained off-line; therefore, this 

method does not seem to be practical. Another approach 

for satellite control is feedback linearization [8]. This 

method employs input-output linearization. Hence, 

selection of the output functions is very important and 

has a direct effect on stability. In addition, a composite 

anti-disturbance control scheme with the reaction wheel 

friction has been proposed in [9]. In this method, to 

estimate the reaction wheel friction, a sliding mode 

friction observer is designed. The studies indicate that 

there are many linear, nonlinear and optimal algorithms 

to control reaction wheels, though some of them have 

shortcomings [10-11]. 

The aim of this paper is to introduce an approach 

to control satellites attitude based on CTDPN tool. 

Using Petri Nets tool provides the ability to design a 

controller using system signals such as system states 

and variables (input signal, error etc.). Selection of 

required variables can be performed by experts or 

intelligent techniques. In CTDPN tool, the states and 

variables of systems are available graphically, so, the 

designer can combine state variables and other variables 

together and use them in the controller. Meanwhile, the 

simple connection between graphical and mathematical 

part in CTDPN tool allows for entering new variables 

in the incidence matrix easily. Nevertheless, due to the 

cost of sensors, measuring all system states is not 

feasible in a real system. To solve this problem, it is 

proposed to drive the system states based on the 

combination of observer data and mathematical model 

of system obtained by CTDPN tool.  

Gain tuning has a significant role in improving the 

performance of a control scheme. One of the innovations 

in this article is to provide a method to tune the controller 

gains based on the system behavior. In the proposed 

approach, gain tuning is divided into three stages. In the 

first stage, the controller is designed for the system 

modeled by CTDPN tool. In this method, poles and zeros 

can be added to the system based on the graphical 

property of Petri Nets. In the second stage, using 

optimization methods such as genetic algorithm (GA), 

the control gains are calculated at any given time and the 

data are collected. In order to calculate control gains in 

this step, different inputs must be applied to the system. 

Finally, in the third stage, a relationship between set of 

variables (such as input signal, error etc.) and gain is 

created with states and gains regarded as inputs and 

outputs, respectively. The graphical and mathematical 

structure in the CTDPN tool can help design a variety of 

controllers easily and flexibly in comparison with 

classical controllers [12-14].  

The proposed approach was compared with some 

previous approaches such as proportional-integral-

derivative (PID) controller which is commonly used. The 

results showing effectiveness of the controller and tuning 

approach. One of the important challenges related to 

control design process is to check if the controller is 

capable of maintaining the closed-loop system stable in 

presence of uncertainties [15]. To investigate this fact, 

some uncertainties are added to the parameters, and 

robustness of the proposed controller is checked. 

Considering the new control approach, it is observed that 

less energy is consumed as compared with PID 

controller. In addition, attitude and angular velocity 

responses are smoother than the PID controller. The rest 

of this paper is organized as follows. In Section 2, 

CTDPN tool is defined and in Section 3, the setup of air 

bearing simulator and system dynamic is described. The 

controller design and mechanism of gain tuning 

are presented in section 4. In section 5 simulation results 

and experimental results are presented. Finally, section 6 

concludes the paper. 

Continuous Time Delay Petri Nets 

(CTDPN)  

Differential equations are one of the well-known tools for 

system modeling. On the other hand, it is very difficult to 

show the differential equations with the Petri Nets tool. 

To overcome this problem, CTDPN was proposed by 

[12]. The novel features of CTDPNs include the negative 

real values accepted for place markings. In this approach, 

firstly, a formal definition is presented after which some 

mathematical definitions, rules, and a simple example are 

presented to clarify the CTDPN. 

Definition1: A Continuous Time Delay Petri Nets 

(CTDPN) is a 5-tuple 𝑃𝑁𝑐 =
{𝑃, 𝑇,𝑊−(𝑃𝑟𝑒),𝑊+(𝑃𝑜𝑠𝑡),𝑀0,  𝑇𝑠} such that: 

𝑃 = {𝑝1, 𝑝2, ⋯ , 𝑝𝑛} and 𝑇 = {𝑡1, 𝑡2, ⋯ , 𝑡𝑚} are 

finite sets of continuous places and transitions. 

𝑃𝑟𝑒 and 𝑃𝑜𝑠𝑡 are the incidence functions 

specifying multiplicity of arcs between places and 

transitions. 𝑀0𝜖ℝ is the initial marking vector and 

𝑇𝑠 is the time interval between each run cycle. To 

model the continuous dynamic system using 

CTDPN, the following assumptions and rules should 

be considered [13]: 

 Transitions correspond to time delays. 

 In CTDPN𝑀 ∈ ℝ. 

 The enabling degree of a transition 𝑡𝑗 at a marking 

𝑀(𝑝𝑖) is defined as: 

𝑞(𝑡𝑗, 𝑚) = min
𝑖:𝑝𝑖∈

°𝑡𝑗
(

𝑀(𝑝𝑖)

𝑃𝑟𝑒(𝑝𝑖 , 𝑡𝑗)
) (1) 

A transition 𝑡𝑗 ∈ 𝑇 is enabled i.e., it can fire, iff 
|𝑀(𝑝𝑖)| > 0 ∀𝑝𝑖 ∈

° 𝑡𝑗 

https://en.wikipedia.org/wiki/Linear%E2%80%93quadratic_regulator
https://en.wikipedia.org/wiki/Linear%E2%80%93quadratic_regulator
https://en.wikipedia.org/wiki/Linear%E2%80%93quadratic%E2%80%93Gaussian_control
https://en.wikipedia.org/wiki/Linear%E2%80%93quadratic%E2%80%93Gaussian_control
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 Since in the CTDPN, the maximum possible speed 

of transition is assumed infinity, the transitions 

speed in continuous transitions is determined by the 

input place connected to the transition. 

Controller Design Using CTDPN Tool 

From a control theory and supervisory control point of 

view, using a graphical model containing all system 

properties can be useful and effective practically. 

CTDPN tool presents a great graphical model of 

system dynamic. The main feature of this tool is to 

show all the system variables and the ability to 

combine them visually. Another advantage is the 

simple matrix of this tool, and the straightforward 

relationship between the graphical model which is 

created from system dynamics and mathematics 

governing CTDPN. Therefore, an expert designer can 

design a favorite controller using graphical model 

easily, and then apply changes to the mathematical 

model extracted from CTDPN model and analysis of 

results. These advantages allow for designing and 

implementing different controllers regardless of 

complexity of the system dynamics. 

In this article, controller design is based on the 

system states and variables. One of the novel features 

of the proposed controller is extraction of controller 

gains as a function of the system variables, leading to 

the robustness of the controller. Implementing the 

proposed controller and addressing it mathematically 

are performed simply using the CTDPN tool. 
So far, different methods have been proposed for 

controller design and gain tuning. In most of the control 

approaches, the gains have been chosen as constant 

values even with the presence of complexity of in the 

system and different scenarios. However, in some 

systems with variable parameters and in the presence of 

environment noise, constant gains would not work well. 

To solve the problem, this article proposes a novel 

method in which the gains are tuned online using states 

and variables. The mentioned control function is based 

on a linear relationship between system state space and 

control coefficients. In this approach, the function 

coefficients are obtained from the genetic algorithm 

which are modelled by CTDPN tool. Therefore, the 

properties of the fitness function are considered. 

However practically, all the effective states and variables 

in the controller design are not available. Thus, states and 

variables can be calculated by combining the resulting 

data from the observer and the system model. Figure 1 

demonstrates the block diagram of the proposed control 

scheme.  
In the new approach, to obtain a function for 

adjusting control gains, there are three steps. First, 

the controller is designed in a simulation 

environment for the dynamic system modelled by the 

CTDPN tool. Here,  
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Fig. 1. Block diagram of the proposed control scheme 

using optimal method gain is obtained as a function 

of system states using GA. Then, optimal control 

coefficients functions are extracted using the optimally 

stored data. 

In the following, the proposed control method is 

applied to the dynamic model of satellite simulator. 

Case Study 

The schema of the air bearing system is depicted in Figure 2. 

 

Fig. 2. Schematic structure of the air bearing system [16] 

The air bearing system has two main parts: i) suspended 

platform, and ii) the air-bearing. The air bearing contains 

sensor, reaction wheels’ actuators, and three mutually 

perpendicular magnetic coils, on board computer, 

battery, and mass balancing [17,18]. 

The attitude simulator based on air bearing is 

equipped with reaction wheels. A reaction wheel is a 

device which applies torque to the satellite [19]. An 

AHRS (Attitude and Heading Reference System) 

sensor was chosen as the attitude sensor unit [20]. 

This sensor provides attitude angles and angular 

velocity of the test bed. The table consists of 

electronic units for data acquisition, data 

communication, and algorithm implementation. The 



   

 

 

Abbas Dideban , Alireza Ahangarani Farahani 28/ 
 

Journal of Space Science and Technology 
Vol. 16 / Special Issue/ 2023 (No. 58) 

controller algorithm is implemented in an industrial 

embedded computer. It imports data from AHRS and 

motors, to compute the output wheel speeds, to 

export the desired wheel speeds, and to save the 

resulting test. The computer generates torque signals 

for reaction wheels so as to produce control torques 

on the satellite. The block diagram of air bearing 

satellite simulator setup is displayed in Figure 3. 

I/O Ports

Wireless COM

Other 

Devices

Driver

Driver

Driver

Driver

Brushless 

DC Motor

Brushless 

DC Motor

Brushless 

DC Motor
CAN

Reaction Wheels

Industrial Embedded Computer 

CAN

CAN

CAN

Serial Ports

Simulator Platform

 

Fig. 3. Schematic diagram of the setup. 

Using LabVIEW software running on industrial 

embedded computer hardware, all of the following 

tasks: reading AHRS data, running control 

algorithms, as well as displaying and saving have 

been performed.  

System Dynamics and Kinematic 

The dynamical equations of the simulator are given in 

Appendix A. 

Therefore, nonlinear state space equation of system 

is as follow: 

�̇� = [
03×3 𝑅

03×3 𝑓(𝜔)
].X+

[
 
 
 
 
 
 
 
0 0 0
0 0 0
0 0 0
1

𝐼𝑥𝑥
0 0

0
1

𝐼𝑦𝑦
0

0 0
1

𝐼𝑧𝑧]
 
 
 
 
 
 
 

𝑇 ⇒ 

�̇� = 𝐴(𝑋) X+bT 

(2) 

Where: 

�̇� = [�̇� �̇� �̇� �̇�𝑥 �̇�𝑦 �̇�𝑧]
𝑇
 

 

𝐼𝑖𝑖(𝑖𝑖 = 𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is moment of inertia and T is Torque 

produced by reaction wheels. 
Therefore, the linear state space equation of the system 

can be written as follows [21]: 

�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑢(𝑡) ⇒ 

[
 
 
 
 
 
 ∅̇

�̇�
�̇�

∅̈

�̈�
�̈�]
 
 
 
 
 
 

=

[
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
𝑎41 𝑎42 0 0 0 0
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𝜃
𝜓

�̇�

�̇�
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+

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0
𝑏41 𝑏42 𝑏43
𝑏51 𝑏52 𝑏53
𝑏61 𝑏62 𝑏63]

 
 
 
 
 

[

𝑇𝑐𝑥
𝑇𝑐𝑦
𝑇𝑐𝑧

] 

(3) 

where with an appropriate approximation, the parameters 

in (3) is obtained as: 

𝑎41 =
𝑚𝑔𝑟𝑧
−𝐼𝑥𝑥

          𝑎42 = 0    𝑎61 =
𝑚𝑔𝑟𝑥
𝐼𝑧𝑧

      

  𝑎62 =
𝑚𝑔𝑟𝑦

𝐼𝑧𝑧
 

𝑏41 =
1

𝐼𝑥𝑥
      𝑏42 = 0     𝑏43 = 0   𝑏51 = 0     

 𝑏52 =
1

𝐼𝑦𝑦
    𝑏53 = 0 

𝑏61 = 0       𝑏62 = 0      𝑏63 =
1

𝐼𝑧𝑧
 

 

Air Bearing Simulator Modelling 

Based on CTDPN  

One can now proceed to discretize the state space (3) as 

follows: 
𝑋(𝑘) = 𝐴𝑑𝑋(𝑘 − 1) + 𝐵𝑑𝑢(𝑘 − 1)  (4) 

where 

𝐴𝑑 = 𝐼 + 𝑇𝑠𝐴 =

[
 
 
 
 
 
1 0 0 𝑇𝑠 0 0
0 1 0 0 𝑇𝑠 0
0 0 1 0 0 𝑇𝑠

𝑇𝑠𝑎41 0 0 0 0 0
0 𝑇𝑠𝑎52 0 0 0 0

𝑇𝑠𝑎61 𝑇𝑠𝑎62 0 0 0 0 ]
 
 
 
 
 

 

𝐵𝑑 = (𝑇𝑠𝐼 +
1

2
𝐴𝑇𝑠

2) 

𝐵 =
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𝑇𝑠 is the sampling time of the system dynamic model based on 
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CTDPN tool is shown in Figure Flowchart 4. The incidence matrix is in (5): 

 

𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0

1

2
𝑇𝑠
2𝑏41 0 0 0 0 0 𝑇𝑠 0 0

0
1

2
𝑇𝑠
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0 0
1

2
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0 𝑇𝑠𝑏52 0 0 𝑇𝑠𝑎52 0 0 0 0
0 0 𝑇𝑠𝑏63 𝑇𝑠𝑎61 𝑇𝑠𝑎62 0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 

 (5) 

 

So, it is obvious that the properties of system are 

reserved in the incidence matrix 𝑊. 

𝑊 = [
0𝑚×𝑚 0𝑚×𝑛
𝐵𝑑 𝐴𝑑

] − 𝐼(𝑚+𝑛)×(𝑚+𝑛) (6) 

The fundamental equation is written as: 

𝑚(𝑘) = 𝑚(𝑘 − 1) +𝑊𝑣 (7) 
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Fig. 4. CTDPN model of air bearing simulator 
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Fig. 5. CTDPN model of the system and controller 
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CTDPN Tool in Control Design 

To implement the controller described in the previous 

section, CTDPN is used through the following eight 

steps: 

1. Model the system dynamic using CTDPN tool 

and obtain the incidence matrix. The CTDPN model of 

(4) is shown in Figure 4. 

Design a new controller based on CTDPN for this 

system. Figure 5 depicts the second order system with 

the controller described in (4). 

The incidence matrix of Figure 5 can be obtained 

as (8):  

𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
−1 0 0 −𝐾1 0 0 −𝐾2 0 0
0 −1 0 0 −𝐾3 0 0 −𝐾4 0
0 0 −1 0 0 −𝐾5 0 0 −𝐾6

1

2
𝑇𝑠
2𝑏41 0 0 0 0 0 𝑇𝑠 0 0

0
1

2
𝑇𝑠
2𝑏52 0 0 0 0 0 𝑇𝑠 0

0 0
1

2
𝑇𝑠
2𝑏63 0 0 0 0 0 𝑇𝑠

𝑇𝑠𝑏41 0 0 𝑇𝑠𝑎41 0 0 0 0 0
0 𝑇𝑠𝑏52 0 0 𝑇𝑠𝑎52 0 0 0 0
0 0 𝑇𝑠𝑏63 𝑇𝑠𝑎61 𝑇𝑠𝑎62 0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 

 (8) 

Here, the dimensions of the incidence matrix W are 9×9. 

The vector v is defined as: 

𝑣 = [
𝑢(3×1)(𝑘 − 1)

𝑚(6×1)(𝑘 − 1)
] 

(9) 

𝐾 𝑖(𝑖 = 1,… ,6) is tuned in the next step. 

2. This step is divided into three sub-steps as 

follows: 

2.1. Run an optimal method with predefined stop 

criteria to calculate controller gains. 

2.2. Save the output of each repetition as a sample 

of gain vectors and system states. 

2.3. Save samples of gain and system states in 

matrices S, M, respectively. Therefore: 

𝑆 = [

𝐾11 𝐾21 ⋯ 𝐾𝑙1
𝐾12 𝐾22 ⋯ 𝐾𝑙2
⋮ ⋮ ⋱ ⋮
𝐾1𝑁 𝐾2𝑁 ⋯ 𝐾𝑙𝑁

] 

 

(10) 

and 

𝑀 =

[
 
 
 
 
𝑥11(𝑡𝑓) 𝑥21(𝑡𝑓) ⋯ 𝑥𝑛1(𝑡𝑓)

𝑥12(𝑡𝑓) 𝑥22(𝑡𝑓) ⋯ 𝑥𝑛2(𝑡𝑓)

⋮ ⋮ ⋱ ⋮
𝑥1𝑁(𝑡𝑓) 𝑥2𝑁(𝑡𝑓) ⋯ 𝑥𝑛𝑁(𝑡𝑓)]

 
 
 
 

 (11) 

In the incidence matrix of Figure 5, coefficient 

K i(i = 1,… ,6) is obtained using genetic algorithm. In 

this study, the fitness function is defined by the following 

equation: 

 𝐹𝑜𝑏𝑗 = (𝑟(𝑘) − 𝑦(𝑘))
2
 (12) 

This fitness function describes how the RMS error will 

eventually decrease to find a better choice for the gain 

of output feedback controller. Here, r(k) and y(k) are 

input and output signals respectively. 
1. Implement a new approach in which the 

controller gain is tuned using coefficients of the 

variables. Figure 6 illustrates the aforementioned 

system with the new controller and the gain 

tuning approach. 

In Figure 6, the controller gain K1 can be 

calculated using pc1, which had been structured by 

p4 and p7.  

2. Establish a linear relationship between 

matrices S, M and the controller coefficients. This 

relationship could be described as (13):  

 [𝑘1, 𝑘2, … , 𝑘𝑖] = (𝑀𝑇𝑀)−1𝑀𝑆 (13) 

where, k1, k2, ⋯ , ki are the classical controller gains.  

Moreover, S is the vector of gains and M is matrix 

of states x1, x2, ⋯ , xi, which are obtained from GA run. 

3. The observer is modeled using CTDPN to 

estimate the states.  

4. In order to obtain the states and variables, 

the dynamic model and the observer modeled 

by CTDPN together with the real system are 

run.  

5. Run new controller using coefficients 

k1, k2, ⋯ , ki online. 



 

 

 

 

Journal of Space Science and Technology 
Vol. 16 / Special Issue / 2023 (No. 58) /31 

 

A New Adaptive Controller for the Three Axis Satellite Simulator …   

t1 t2 t3

t4

p4=x1(k)
p7=x4(k)

t7

p5=x2(k)

t5

p8=x5(k)

t8

p6=x3(k)

t6

p9=x6(k)

t9
1

1 1

111

Ts Ts
Ts

Tsa41
Tsa52Tsa52

Tsa62

p1=u1(k)

p2=u2(k) p3=u3(k)

0.5Ts
2b41

0.5Ts
2b52 0.5Ts

2b63
Tsb63Tsb52

Tsb41

Tsa61

-K1

-K2 -K3

-K4

-K5

-K6

-k1

-k2

pc1

tc1

-k5

-k6

-k9

-k10

tc3

tc5

pc2

tc2

-k3

-k4

pc4

tc4

-k7 -k8

pc4

tc4

pc3
pc5

-k11

-k12

 

Fig.6. CTDPN model of the system and new controller 

Flowchart of this algorithm is shown in Figure 7. 

.

Start

Model the system dynamic using 

CTDPN tool and obtain the 

incidence matrix

Design a new controller based on 

CTDPN 

Run Optimal method and save 

data in data base.

Implement a new approach in 

which the controller gain is tuned 

using coefficients of the variables

Establish a linear relationship 

between states and the controller 

coefficients

The observer is modeled using 

CTDPN to estimate the states.

The dynamic model and the 

observer modeled by CTDPN.

Run new controller in system

Stop

  

Fig. 70 Flowchart algorithm to design a control
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Stability Analysis 

In this subsection, stability of the proposed 

controller is formed and the controller design 

connected in the closed loop will be investigated. 

It is known that the controller design can be 

described as follows: 

𝑇 = [

𝑇𝑥
𝑇𝑦
𝑇𝑧

] = −𝐾𝑋 (14) 

where: 

{
 
 
 

 
 
 𝑇𝑥 = Κ1∅ + Κ2𝜔𝑥 ⇒ {

Κ1 = 𝑘1∅ + 𝑘2𝜔𝑥

Κ2 = 𝑘3∅ + 𝑘4𝜔𝑥

𝑇𝑦 = Κ3𝜃 + Κ4𝜔𝑦 ⇒ {
Κ3 = 𝑘5𝜃 + 𝑘6𝜔𝑦

Κ4 = 𝑘7𝜃 + 𝑘8𝜔𝑦

𝑇𝑧 = Κ5𝜓 + Κ6𝜔𝑧 ⇒ {
Κ5 = 𝑘9𝜓 + 𝑘10𝜔𝑧

Κ6 = 𝑘11𝜓 + 𝑘12𝜔𝑧

⇒  

𝑇

= − [

∅ 0 0 𝜔𝑥 0 0
0 𝜃 0 0 𝜔𝑦 0

0 0 𝜓 0 0 𝜔𝑧

]

×

[
 
 
 
 
 
 
�̅�1 0 0 �̅�2 0 0

�̅�3 0 0 �̅�4 0 0

0 �̅�5 0 0 �̅�6 0

0 �̅�7 0 0 �̅�8 0

0 0 �̅�9 0 0 �̅�10
0 0 �̅�11 0 0 �̅�12]

 
 
 
 
 
 

[
 
 
 
 
 
𝜙
𝜃
𝜓
𝜔𝑥
𝜔𝑦
𝜔𝑧]
 
 
 
 
 

⇒ 

𝑇 = −ℎ(𝑋)ΚX  

(15) 

Therefore, using (14) and (2), the state space 

equation can be written as: 

�̇�(𝑡) = 𝐴(𝑋)𝑋(𝑡) − 𝛽(ℎ(𝑋)ΚX ) ⇒ 

�̇�(𝑡) = (𝐴(𝑋) − 𝛽ℎ(𝑋)Κ)𝑋(𝑡) 
(16) 

To investigate the stability of (16), the 

following Lyapunov function in quadratic form is 

employed: 

𝑉 =
1

2
𝑋𝑇(𝑡)𝑋(𝑡) (17) 

It is clear that V ≥ 0. For the stable system, there 

exists    V̇ ≤ 0, where: 

�̇� = 𝑋𝑇(𝑡)�̇�(𝑡) ⟹ �̇�
= 𝑋𝑇(𝑡)(𝐴(𝑋)
− 𝛽ℎ(𝑥𝑋)Κ)𝑋(𝑡) < 0 

(18) 

To satisfy the condition �̇� < 0, the last term on the 

right-hand side of (13) is considered to be: 

𝐴(𝑋) − 𝛽ℎ(𝑋)Κ < 0 ⇒ 𝛽ℎ(𝑋)Κ > 𝐴(𝑋)  (19) 

If the control gains obtained by the GA method 

satisfy the condition of (19), the closed-loop system will 

be stable. 

Experimental Results 

In this section, the proposed modelling approach 

and the control algorithm for air bearing are 

implemented. In the control system designed in 

this paper, the control signal is derived from the 

states, derivatives, integrals, and some other 

variables. Here, the controller gains are computed 

and updated according to the values of the system 

variables. This idea has been implemented by 

CTDPN tool. Firstly, using the introduced 

technique, control gains for the simplified model 

of the system are calculated in MATLAB 

simulation environment. Then, these gains are 

used in the air bearing system which is a nonlinear 

system with sensor noise. In the following, 

experimental results are compared with the PID 

controller results. Figure 8 indicates test bed 

simulator.  

 

Fig. 8. Test bed simulator [22]. 

Table 1 lists the main parameters of the simulator. 
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Table. 1. Air bearing parameters 

Parameters Value 

Total Floating 

Mass 
85 (kg) 

Attitude 

Determination 

Accuracy 

 

Roll 

Pitch 

Yaw 

±0/2 o 

±0/2 o 

±1o 

Angular 

Excursion  

Roll  

Pitch 

Yaw  

±40o 

±40o 

±180o 

Inertia Matrix 

𝐼

= [
6.72 0.85 0.035
0.85 7.45 −0.032
0.035 −0.032 12.29

] (𝑘𝑔.𝑚2) 

Maximum Torque 

of Each Reaction 

wheel  
0/8 (Nm) 

Maximum 

Angular 

Momentum 
10 (Nms) 

Gravity vector  

𝑚𝑔𝑟𝑥  

𝑚𝑔𝑟𝑦  

𝑚𝑔𝑟𝑧 

0/012 (Nm) 

1×10-4 (Nm) 

0/211 (Nm) 

𝑇𝑠  0/001 (Sec) 

The considered time interval is [0(𝑆𝑒𝑐) 80(𝑆𝑒𝑐)]. 

Figure 9 illustrates the response to the reference signal 

based on CTDPN using GA algorithm method for all 

states in simulation environment. 

 

Fig. 9. States of air bearing system based on CTDPN using 

GA method in simulation environment. 

The gains of the output feedback controller are also 

depicted in Figure 10. 

 

Fig. 10. Controller gains based on GA method 

By saving system states data and control gains data 

in 𝑀 and 𝑆 vectors, respectively, the coefficients of the 

relation are obtained using the least squares method. 

[�̅�1 �̅�2] = [12.2891 8.5594] 

[�̅�3 �̅�4] = [14.1089 9.8947] 

[�̅�5 �̅�6] = [−2.8417 6.0759] 

[�̅�7 �̅�8] = [−2.5533 4.429] 

[�̅�9 �̅�10] = [7.9273 18.6643] 

[�̅�11 �̅�12] = [7.6502 19.0767] 

 

Figure 11 shows the gains that satisfy the condition of 

(19). 

 

Fig. 11. Stability analysis of closed-loop system using the 

proposed controller 
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This system has three torque inputs produced by the 

reaction wheels. Three digital 𝑃𝐼𝐷 controllers were 

implemented by the computer to control the angular 

position of the air bearing simulator. The controller gains 

were adjusted manually, and chosen such that they 

minimized the settling time and errors. The values 

obtained for the 𝑃𝐼𝐷 controllers are as follows: 

[𝑘𝑝1 𝑘𝐷1 𝑘𝐼1] = [1.7 4.7 0.7] 

[𝑘𝑝2 𝑘𝐷2 𝑘𝐼2] = [2.8 3.32 0.1] 

[𝑘𝑝3 𝑘𝐷3 𝑘𝐼3] = [1.8 2.86 0. 005] 

 

In the following, firstly, the robustness of the 

proposed control design is evaluated. Figure 12 depicts 

robust stability for three axes revealing that the proposed 

controller has almost equally good stability margins. 

From Figure 12, since the 𝜇 parameter is less than one, 

it can be concluded that the proposed approach can lead to 

relatively simple controllers keeping robust features. 

The controller is designed based on linear model of 

the system. However, with some variations in angles, it 

can also be effective for nonlinear systems. 
To compare the new controller and the PID 

controller, both methods are implemented on the table. 

The initial conditions are: 

[∅ 𝜃 𝜑 ∅̇ �̇� �̇�]𝑇

= [
𝜋

18
−
𝜋

18

𝜋

10
0 0 0]

𝑇

 

 

Figure 13 illustrates the response of Roll, Pitch, and 

Yaw angles to the reference signal based on the new 

controller design and PID approach, respectively. 

The results show that the proposed approach presented 

results in smoother angle in comparison to those of the PID 

controller where the absolute peaks are lower. Figure 14 

demonstrates angular velocities of the simulator. 

Angular velocities in the proposed method and PID 

controller have the same response, but in the proposed 

approach, maximum overshoot and undershoot are lower. 

The absolute peak of angular velocity values in y and z 

axes have been improved by 30% and 70%, respectively. 

Figure 15 displays the control torques in both methods. 

 

Fig. 12. Robust Stability for the proposed controller in three axes 

 

Fig. 13. Experimental results of attitude angles Ø, θ, ψ 

 

Fig. 14. Experimental results of angular velocities of Ø, θ, ψ 

 

Fig.15. Torques in three axes x, y and z 

The amplitude of the control torques in the proposed 

method are smaller than those of the PID controller, so 

the energy consumption is reduced. Speed of reaction 

wheels shows in Figure 16. 

The figure above shows that the speed of the 

reaction wheels is almost the same in both methods. 
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Energy consumption can also be calculated using the 

following measure: 

 𝑊 = ∑ 𝑈(𝑖). ∆𝜃(𝑖)𝑛
𝑖=1  (20) 

Table 2 reports the energy consumption of the two 

methods, in three axes 𝑥, 𝑦 and 𝑧. 

Table .2. Energy consumption in three axes 

Method Wx (J) Wy(J) Wz(J) 

New approach 0/0046 0/0054 0/0013 

PID 0/0058 0/0059 0/0029 

For satellites, energy consumption is an important 

factor affecting the weight of the satellite. Table 2 

indicates that energy consumption of the new method is 

better than the conventional PID controller energy 

consumption. 

According to the rest of the results, the proposed 

approach showed greater improvement compared to the 

PID controller used in the literature for control. In order 

to check the stability of the controller design, the 

parameters values have been changed by 10%, with the 

result represented in Figure 17. 

Fig.16. Speed of reaction wheels. 

 

Fig. 17. The closed-loop system performance in tracking with 

variable parameters 

The results indicate that the controller is robust to 

parameters variation. Using CTDPN is not an 

advantage on its own, but rather an advantage in the 

simplicity of controller design and and gain tune. This 

is mainly as they are tuned based on system states, 

errors, inputs, outputs, and other variables, which are 

structured in the CTDPN approach. The relationship 

between the gains and the variables is defined by the 

functions determined using intelligent algorithms. The 

type of intelligent algorithm can affect the responses. 

On the other hand, controller design based on CTDPN 

provides a powerful tool for the designer. The CTDPN 

tool provides both graphical and mathematical aspects. 

The relationship between its graphical and 

mathematical parts is direct. In this paper, using the 

graphical model, the system model dynamic is 

extracted. Using the graphical model, all states are 

available to the designer, allowing for creating new 

variables from the states simply. Then, the new 

graphical model is transformed to a mathematical 

model in an incidence matrix, without considering the 

common complexities. Accordingly, designing a 

controller using the proposed tool is absolutely 

convenient. 

Conclusion 
In this paper, a mathematical definition was presented for 

CTDPN, and a new control method was designed based 

on this tool. The selection of system variable for 

controller calculation was performed by an optimal 

method. Then, the controller gains were tuned based on 

the system states. The function parameters were obtained 

from the GA method. To evaluate the performance of the 

proposed method, the controller was implemented in the 

air bearing satellite simulator, and the new control 

method was compared with PID controller. The 

experimental results revealed a significant improvement 

in the smoothness and energy consumption in the 

proposed approach, which can lead to less satellite 

weight and cheaper equipment. 
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Appendix A 

The dynamical equations of the simulator are derived 

using the Euler equation as follows [22]: 

𝑇 = ℎ̇𝐼 = ℎ̇𝐵 + 𝜔 × ℎ𝐵 (21) 

where, 

ℎ𝐵 = [𝐼]𝜔 (22) 

and: 

𝐼 = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑦𝑥 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧𝑧

]    

𝜔 = [

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

] 

(23) 

For the torque, it is generated by: 

𝑇 = 𝑇𝑐 + 𝑇𝑑 + (𝑚𝑔𝑟𝑠) × 𝐾 (24) 

where, Tc ،Td, and mgrs are control torque, disturbance torque, 

and the gravity unbalance torque, respectively. K is the basis 

vector and is achieved as: 

𝐾

= [

c 𝜃 c𝜓 c 𝜃 s𝜓  − s 𝜃
s𝜙 s 𝜃 c𝜓 − c𝜙 s𝜓 s𝜙 s 𝜃 s𝜓− c𝜙 c𝜓 𝑠 𝜙 c 𝜃
c𝜙 s 𝜃 c𝜓 + s𝜙 s𝜑 c𝜙 s𝜃 s𝜑 − s𝜙 c𝜓 c𝜙 c 𝜃

]

× [
0
0
1
] = [

−s 𝜃
s𝜙 c 𝜃
s𝜙 c 𝜃

] 

(25) 

where, rs is position vector from bearing center with 

respect to the body frame as follows: 

𝑟𝑠 = [

𝑟𝑥
𝑟𝑦
𝑟𝑧
] (26) 

In this vector, rz has an effective role in stability of the 

platform; if rz > 0 the simulator is stable as the center 

of gravity is lower than the center of the platform 

rotation; if rz = 0 the platform is null and in this 

condition the center of gravity coincides with the center 

of platform rotation. Finally, if rz < 0, system is 

unstable because the center of gravity is upper than 

center of air bearing rotation. Applying (25) and (26) in 

(24) gives: 

 𝑇𝑥 = 𝑇𝑐𝑥 + 𝑇𝑑𝑥 +𝑚𝑔(𝑟𝑦 cos𝜙 cos 𝜃

− 𝑟𝑧 sin𝜙 cos 𝜃) 

 𝑇𝑦 = 𝑇𝑐𝑦 + 𝑇𝑑𝑦 +𝑚𝑔(−𝑟𝑥 cos 𝜙 cos 𝜃 −

𝑟𝑧 sin 𝜃)  

𝑇𝑧 = 𝑇𝑐𝑧 + 𝑇𝑑𝑧 +𝑚𝑔(𝑟𝑥 sin𝜙 cos 𝜃

+ 𝑟𝑦 sin 𝜃) 

(27) 

Using the above formulations, the nonlinear equation of 

the simulator may be expressed as: 

𝑇𝑥 = 𝐼𝑥𝑥�̇�𝑥 − 𝐼𝑥𝑦�̇�𝑦 − 𝐼𝑥𝑧�̇�𝑧 + 𝐼𝑦𝑥𝜔𝑥𝜔𝑧

− 𝐼𝑦𝑦𝜔𝑦𝜔𝑧 + 𝐼𝑦𝑧𝜔𝑧
2

− 𝐼𝑧𝑥𝜔𝑥𝜔𝑦 − 𝐼𝑧𝑦𝜔𝑦
2

+ 𝐼𝑧𝑧𝜔𝑧𝜔𝑦  

  𝑇𝑦 = 𝐼𝑦𝑦�̇�𝑦 − 𝐼𝑦𝑥�̇�𝑥 − 𝐼𝑦𝑧�̇�𝑧 + 𝐼𝑥𝑥𝜔𝑥𝜔𝑧 −

𝐼𝑥𝑦𝜔𝑦𝜔𝑧 − 𝐼𝑥𝑧𝜔𝑧
2 + 𝐼𝑧𝑥𝜔𝑥

2 + 𝐼𝑧𝑦𝜔𝑦𝜔𝑥 −

𝐼𝑧𝑧𝜔𝑧𝜔𝑥  

𝑇𝑧 = 𝐼𝑧𝑧�̇�𝑧 − 𝐼𝑧𝑥�̇�𝑥 − 𝐼𝑧𝑦�̇�𝑦 − 𝐼𝑥𝑥𝜔𝑥𝜔𝑦

+ 𝐼𝑥𝑦𝜔𝑦
2 + 𝐼𝑥𝑧𝜔𝑧𝜔𝑦

− 𝐼𝑦𝑥𝜔𝑥
2 + 𝐼𝑦𝑦𝜔𝑦𝜔𝑥

− 𝐼𝑦𝑧𝜔𝑧𝜔𝑥 

(28) 

Therefore, the nonlinear state space equation of angular 

velocity is as: 

[

�̇�𝑥
�̇�𝑦
�̇�𝑧

] =

[
 
 
 
 0 0

𝐼𝑦𝑦−𝐼𝑧𝑧

𝐼𝑥𝑥
𝜔𝑦

−𝐼𝑥𝑥+𝐼𝑧𝑧

𝐼𝑦𝑦
𝜔𝑧 0 0

0
𝐼𝑥𝑥−𝐼𝑦𝑦

𝐼𝑧𝑧
𝜔𝑥 0 ]

 
 
 
 

[

𝜔𝑥
𝜔𝑦
𝜔𝑧
] +

[
 
 
 
 
1

𝐼𝑥𝑥
0 0

0
1

𝐼𝑦𝑦
0

0 0
1

𝐼𝑧𝑧]
 
 
 
 

[

𝑇𝑥
𝑇𝑦
𝑇𝑧

] ⟹ �̇� = 𝑓(𝜔)𝜔 + 𝑏𝑇  

(29) 

From above equations, [ωB
I ]
B

 is resulted, which can be used 

in Kinematic equations. Due to the perceptibility of sending 

http://jsst.ias.ir/article_44273.html?lang=en
http://jsst.ias.ir/article_44273.html?lang=en
http://jsst.ias.ir/article_44273.html?lang=en
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control commands in the orbit reference frame, it is better 

that the angular velocity is defined in the orbit reference 

frame. Therefore, [ωB
I ]
B

 can be written as: 

 [𝜔𝐵
𝐼 ]𝐵 = [𝜔𝐵

𝑂𝑅]𝐵 + [𝜔𝑂𝑅
𝐼 ]𝐵 (30) 

[𝜔𝐵
𝑂𝑅]𝐵 and [𝜔𝑂𝑅𝐼 ]𝐵 are the angular velocity of the 

platform with respect to orbit frame and the angular 

velocity of the orbit frame with respect to inertial frame, 

respectively. For air bearing simulator, since the orbit 

reference frame and body frame are the same and the run 

time is short, consequently, the angular velocity in body 

frame with respect to inertial frame  

[ωB
I ]
B
= [ωB

OR]
B
= [

p
q
r
]

= [
1 0 − s θ
0 cϕ sϕ c θ
0 − sϕ cϕ cθ

] [

ϕ̇

θ̇
ψ̇

] 

(31) 

To solve the above equation, the Eulerian angle are given 

as (26): 

[

ϕ̇

θ̇
ψ̇

] = [

1 sϕ t θ cϕ t θ
0 cϕ − sϕ

0 sϕ c θ⁄ cϕ c θ⁄
] [

ωx
ωy
ωz
] ⟹ �̇�

= Rω 

(32) 

Assuming that angles are small, the equations can 

be linearized [24]: 

𝑇𝑐𝑥 + 𝑇𝑑𝑥 +𝑚𝑔(𝑟𝑦 − 𝑟𝑧∅)

= 𝐼𝑥𝑥∅̈ − 𝐼𝑥𝑦�̈� − 𝐼𝑥𝑧�̈� 

 𝑇𝑐𝑦 + 𝑇𝑑𝑦 +𝑚𝑔(−𝑟𝑥 − 𝑟𝑧𝜃) = −𝐼𝑦𝑥∅̈ +

𝐼𝑦𝑦�̈� − 𝐼𝑦𝑧�̈�                   

𝑇𝑐𝑧 + 𝑇𝑑𝑧 +𝑚𝑔(𝑟𝑥 + 𝑟𝑦𝜃) = −𝐼𝑧𝑥∅̈ − 𝐼𝑧𝑦�̈� +

𝐼𝑧𝑧�̈�   

(33) 

 


