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Abstract 

Linear algorithms are the most widely used method for satellite attitude control using 

reaction wheels because of their simplicity and low computational cost. The first part of the 

paper introduces different attitude determination and control algorithms, and reviews 

resources that utilized optimal linear and nonlinear control methods (such as LQR and 

SDRE). Next, dynamic equations for the control of the satellite using reaction wheels have 

been extracted, then the satellite controller has been designed by using optimal linear and 

nonlinear methods, which are robust against noise and disturbance, as an alternative for 

the PD controller. Finally, the designed control algorithms have been implemented for 

different satellite pointing scenarios, and by simulating these methods in MATLAB 

software, their performance has been studied and compared. 
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Introduction 

The satellite attitude determination and control subsystem 

(ADCS) consists of three main parts including monitoring, 

estimation and control system. The overall workflow 

begins with the monitoring system. Based on the 

information collected from all satellite sensors, and 

predefined tasks, the ACDS performs the necessary 

commands to begin and end a control algorithm.  

The control system has two main tasks including 

control of angular velocity and pointing toward the 

desired target. Nanoscale satellites generally use 

actuators such as reaction wheels and magnetometers for 

this purpose. 

The dynamic system of satellites is nonlinear and 

Quaternion Proportional Derivative (PD) feedback is 

commonly used to control reaction wheels [1-3]. 

Although some research proposed model-free optimal 

control algorithms [4], most of the optimization 

algorithms are used to adjust PD coefficients; and the 

linear quadratic method is one of the most widely used 

methods for this purpose [5]. 

In this method, in order to calculate the optimal 

control coefficients, a cost function is defined as (1). 

(1) 𝐽 = ∫ (𝑋𝑇𝑄𝑋 + 𝑈𝑇𝑅𝑈)𝑑𝑡
∞

0

 

In this equation, Q and R are real and symmetric 

matrices. R is a definite positive matrix (all its 

eigenvalues are positive) and Q is a positive semi-definite 

matrix (all its eigenvalues are non-negative). Matrix Q 

represents the weight and cost of the tracking error or 

deviation from the desired condition and R represents the 

weight and importance of energy consumption for the 

control actuator. These two matrices are determined 

according to the nature of the system, performance 

requirements, cost constraints as well as the maximum 

actuators’ capacity. The Linear–Quadratic Regulator 

(LQR) method is a suitable approach to attitude control 

of the satellite in order to optimize energy consumption, 
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control time and effort, and obtain the optimal gain 

matrix. In this method, the goal is to find a linear control 

command in the form of 𝑈 = −𝐾𝑋 so that the mentioned 

cost function becomes minimized. The Q and R matrices 

can be achieved by compromising between performance 

requirements and cost constraints.  

The structure of the State-Dependent Riccati 

Equation (SDRE) is quite similar to the LQR controller 

and using Q and R coefficients, the algebraic Riccati 

equation is formed and the control coefficient is 

calculated from its solution. The difference between 

SDRE and LQR controls is that SDRE control is used for 

nonlinear time-variant systems. In these systems, 

because of the variability of the state matrix, A, and input 

matrix, B, and the need for linearizing the system around 

the new operating point, the Riccati equation is 

continuously formed in the control operation, and the 

coefficient matrix is updated consequently. In other 

words, in this controller, the control coefficient is 

nonlinear and depends on the state variables directly. 

The LQR method is suitable for systems that have 

an accurate model and ideal sensors and actuators. In 

practice, however, the effects of sensor noise and 

disturbances on actuators always affect control 

performance. In the LQG1 method, by combining the 

controller and estimator, the effects of system input noise 

and measurement noise are considered. 

LQG algorithm consists of two parts: 1. determining 

the control signal by estimating the state of the outputs, 

and 2. applying the optimal control law based on the dual 

principle. Each random signal in a linear system is 

Gaussian and is determined by its mean and variance. 

The Kalman filter provides a non-biased estimate with 

minimal variance. Combining this optimal estimate with 

optimal control creates an optimal closed-loop system. 

But estimation and control can be solved separately to 

avoid over-complicating of the combined problem. 

In the article [6], Arefkhani and his colleagues 

evaluated the magnetic attitude controller using PD and 

LQR rules and used a three-axial satellite control simulator 

based on air bearing to evaluate the control performance. 

For this purpose, they used Eulerian angles and their 

derivatives as states and obtained A and B matrices using 

linearized equations. Then calculated control coefficients by 

solving the algebraic Riccati equation. 

In another paper [7], Miri designed an optimal 

control for satellite attitude maneuvers with the control 

law of the second-order linear regulator. In this work, 

Eulerian angles and their derivatives were used as system 

state variables. Also, neglecting the multiplication terms, 

the linearization around the equilibrium point was done 

and the equations were simplified. Also, by performing 

various simulations, it was been shown that to achieve 

higher convergence speed by adjusting the coefficients Q 

and R, energy consumption is significantly increased. 

Also, by comparing the results with another reference in 

                                                           
1. Linear Quadratic Gaussian 

which more than three reaction wheels are used, it was 

shown that satellite control with more than three reaction 

wheels is far from optimality. Without managing the 

speed of the reaction wheels, their final values will not be 

zero at the end of the maneuver and energy consumption 

will continue. 

In the article [8], Nikkhah used a single-frame 

gyroscopic actuator to attitude control a satellite in a 300 

km orbit, and various control methods such as LQR and 

LQG are used to stabilize the attitude, and quaternion 

feedback is utilized for orbital maneuvering. 

In another article [9], a satellite is controlled by 

LQR and SDRE controllers, and the effect of reaction 

wheels failure is investigated. In this paper, first, the 

satellite dynamic model is extracted based on Eulerian 

angles, then by linearization around the Nadir point using 

the Taylor series, the LQR controller with a fixed gain is 

designed. 

In general, it is concluded that the LQR and SDRE 

controllers are able to stabilize the satellite if the reaction 

wheel in the x-direction (corresponding to the angle Ɵ) 

does not fail, and it is claimed that the SDRE nonlinear 

controller results are better than the LQR linear 

controller. 
In another article [10], Rodrigues modified 

parameters are used to express the kinematics of the 

satellite and the satellite control is done by designing the 

SDRE controller. singularity at a 360-degree angle is the 

main problem with using Rodrigues parameters but this 

article claims it does not occur in the satellite's range of 

motion. In order to solve the Riccati equation, Rodrigues 

parameters and angular velocities are considered state 

variables, and it was shown that matrix B is not 

dependent on the state in this case. 

In the article [11], using the SDRE control method, 

satellite control with reactive wheel actuators and gas 

thrusters is discussed and a 3D INPE2 simulator is used 

for simulations. This simulator has an air bearing 

equipped with three reaction wheels and gas thrusters, 

and three angular velocity sensors such as gyroscopes are 

mounted on its three coordinate directions. It is also 

shown that the SDRE controller can be practically 

implemented on satellite hardware. 

The AAUsat satellite of the University of Aalborg 

uses an optimal LQR controller for pointing. In the report 

[12], it is mentioned that the reason for using the LQR 

method instead of a PD controller is the limitation of 

energy consumption in the satellite. 

In the present paper, after extracting the dynamic 

equations of the satellite, three types of linear, and 

nonlinear time-invariant optimal controllers, including 

optimal gain PD, LQR state feedback and state-

dependent Riccati state feedback will be designed and by 

performing various simulations, the performance of these 

controllers will be compared with each other. Then with 

the combination of quaternion and quadratic feedback 

2. National Institute for Space Research 
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controllers, the most optimal controller for each pointing 

maneuver will be proposed. 

Extraction of Dynamic Equations 

The attitude of a rigid body is usually expressed by Euler 

or quaternion angles. Using quaternions simplifies 

equations and solves singularity problems, but increases 

the state variables by one and needs attention to maintain 

the unit length of the quaternion vector. In both kinematic 

methods, the orientation rate of change is present with the 

angular velocities of the object. 

If the satellite attitude relative to the orbital 

coordinate system is shown by quaternion vector 𝑞 =

(𝑞1, 𝑞2, 𝑞3, 𝑞4)
𝑇 and angular velocity 𝜔𝑏/𝑜

𝑏 =

(𝜔1, 𝜔2, 𝜔3)
𝑇 in the body coordinate, The state equations 

(quaternion changes with respect to angular velocities) 

are written as (2) [13]: 

(2) [

�̇�1

�̇�2

�̇�3

�̇�4

] =
1

2
[

0 𝜔3 −𝜔2 𝜔1

−𝜔3  0  𝜔1 𝜔2

𝜔2 −𝜔1 0 𝜔3

−𝜔1 −𝜔2 −𝜔3 0

] [

𝑞1

𝑞2

𝑞3

𝑞4

] 

In some resources, when using the LQR control 

to avoid the singularity of the Riccati equation, the 

satellite attitude equation is also expressed in the form 

of (3) [14]. 

(3) [

𝑞1̇

𝑞2̇

𝑞3̇

] =
1

2
[

𝑞4 −𝑞3 𝑞2

𝑞3 𝑞4 −𝑞1

−𝑞2 𝑞1 𝑞4

] [

𝜔1

𝜔2

𝜔3

] 

The advantage of using this method is that the q4 

term is removed from the state variables and the 

quaternion error norm in the controller should approach 

zero. 
By knowing the moment of inertia matrix I and 

the applied torques T, the rotation dynamic equations 

are obtained. The moment of inertia matrix is usually 

expressed in the body system. The angular velocity 

can be measured relative to the inertial device or 

orbital device. The attitude dynamic equation of a 

rigid satellite in space in the body system is 

expressed as (4). 

(4) 𝐼�̇�𝑏/𝑖
𝑏 = −𝜔𝑏/𝑖

𝑏 × 𝐼𝜔𝑏/𝑖
𝑏 + 𝑇𝑏 

Assuming a rigid body for the satellite, the 

rotation dynamic equations in the main system are 

expressed as (5) (in which the non-diagonal 

expressions of the moment of inertia matrix can be 

neglected): 

(5) 

�̇�1 =
1

𝐼1
(𝑇1 − (𝐼3 − 𝐼2)𝜔3𝜔2) 

�̇�2 =
1

𝐼2
(𝑇2 − (𝐼1 − 𝐼3)𝜔1𝜔3) 

�̇�3 =
1

𝐼3
(𝑇3 − (𝐼2 − 𝐼2)𝜔2𝜔1) 

In the above equation I1, I2, I3 are the main inertia 

moments of the satellite and 𝜔 = (𝜔1, 𝜔2, 𝜔3)
𝑇 is the 

angular velocity vector in the body system. Also, 𝑇 =
(𝑇1, 𝑇2, 𝑇3)

𝑇 is the torque vector on the satellite which 

includes control torques, definite external torques (such as 

gravity gradient and drag torque) and random torques 

(unpredictable disturbances). It is assumed that the control 

torques are available, the inertia matrix of the satellite is 

diagonal, and the effect of magnitum of reaction wheels is 

negligible. Gravitational and drag torques solar pressure 

force and torque due to the changes in the magnetic field can 

be determined as a function of satellite state variables. 

Disturbance torques are also considered as random inputs to 

the system. Thus, quaternion and angular velocity can be 

expressed as vectors of state variables to express the system 

state equations, as (6) [2]: 

(6) 
d

d𝑡
(
𝑞
𝜔

) =

(

 
 
 
 
 
 
 

1

2
[

𝑞4 −𝑞3 𝑞2

𝑞3 𝑞4 −𝑞1

−𝑞2 𝑞1 𝑞4

]

1

𝐼1
(𝑇1 − (𝐼3 − 𝐼2)𝜔3𝜔2)

1

𝐼2
(𝑇2 − (𝐼1 − 𝐼3)𝜔1𝜔3)

1

𝐼3
(𝑇3 − (𝐼2 − 𝐼2)𝜔2𝜔1))

 
 
 
 
 
 
 

 

By choosing the state vector as [q1, q2, q3, ωx, ωy, ωz]T, the state 

function of the satellite system becomes in the form of (7): 

(7) 

[
 
 
 
 
 
𝑞1̇

𝑞2̇

𝑞3̇

𝜔�̇�

𝜔�̇�

𝜔�̇�]
 
 
 
 
 

= 𝐴(𝑋)

[
 
 
 
 
 
𝑞1

𝑞2

𝑞3

𝜔𝑥

𝜔𝑦

𝜔𝑧]
 
 
 
 
 

+ B [

𝑇𝑟𝑤
1

𝑇𝑟𝑤
2

𝑇𝑟𝑤
3

] +

[
 
 
 
 
 
 
 
 
 

0
0
0

1

𝐼𝑥
𝑇𝑑𝑖𝑠

𝑥

1

𝐼𝑦
𝑇𝑑𝑖𝑠

𝑦

1

𝐼𝑧
𝑇𝑑𝑠𝑖

𝑧

]
 
 
 
 
 
 
 
 
 

 

Therefore, matrices A(X) and B are expressed as (8) and (9). 

(8) 𝐴(𝑋) =

[
 
 
 
 
 
 
 
 
 
 
 
 

  03×3 

1

2
𝑞4 −

1

2
𝑞3

1

2
𝑞2

1

2
𝑞3

1

2
𝑞4 −

1

2
𝑞1

−
1

2
𝑞2

1

2
𝑞1

1

2
𝑞4

03×3

0 −
𝐼3
𝐼1

𝜔3

𝐼2
𝐼1

𝜔2

𝐼3
𝐼2

𝜔3 0 −
𝐼1
𝐼2

𝜔1

−
𝐼2
𝐼3

𝜔2  
𝐼1
𝐼3

𝜔1 0
]
 
 
 
 
 
 
 
 
 
 
 
 

 

(9) 𝐵 =

[
 
 
 
 

03×3

𝐼1
−1     0      0

0       𝐼2
−1    0

0       0     𝐼3
−1]
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Controller Design 
This paper designs and simulates the implementation 

of three types of controllers and compares their 

performance. The first controller is the PD Quaternion 

Feedback Controller. The control law that generates 

the torque of the reaction wheels is calculated from 

(10)[2]. 

(10) 𝑈 = −𝐾𝑝𝛿𝑞1:3 − 𝐾𝑑(𝜔 − 𝜔𝑑𝑒𝑠) 

In this equation, the expression 𝛿𝑞1:3, which is a 

quaternion error, is calculated by (11): 

(11) 

𝛿𝑞1:3 = 𝑞𝑑𝑒𝑠𝑞
𝑇

= [

𝑞4
𝑑𝑒𝑠

−𝑞3
𝑑𝑒𝑠

𝑞2
𝑑𝑒𝑠

 

𝑞3
𝑑𝑒𝑠

𝑞4
𝑑𝑒𝑠

−𝑞1
𝑑𝑒𝑠

 

−𝑞2
𝑑𝑒𝑠

𝑞1
𝑑𝑒𝑠

𝑞4
𝑑𝑒𝑠

 

−𝑞1
𝑑𝑒𝑠

−𝑞2
𝑑𝑒𝑠

−𝑞3
𝑑𝑒𝑠

] [

𝑞1

𝑞2

𝑞3

𝑞4

] 

In this equation, 𝑞𝑑𝑒𝑠 is the desired quaternion. In 

equation (10), Kp and Kd coefficients are obtained by trial 

and error, and a quadratic controller can be used to 

achieve optimal coefficients. 

Quadratic Controller Design 

For state equation in the form 𝑋(𝑡)̇ = 𝐴(𝑡)𝑋(𝑡) +
𝐵(𝑡)𝑈(𝑡) the cost function is considered as (12): 

(12) 
𝐽 =

1

2
𝑋(𝑡𝑓)

𝑇
𝐻𝑋(𝑡𝑓) +

1

2
∫ {(𝑋(𝑡)

𝑡𝑓

𝑡0

− 𝑋𝑑(𝑡))
𝑇𝑄(𝑡)(𝑋(𝑡) − 𝑋𝑑(𝑡))

+ 𝑈𝑇𝑅(𝑡)𝑈}𝑑𝑡 
Where the matrices R, H, and Q are real and 

symmetric. H and Q are semi-definite positive and R 

is positive definite. H, which is the final spatial error 

coefficient, indicates the portion of the final error in 

the cost function J. A higher H results in a path in 

which the final error rate is lower. Q also indicates the 

portion of spatial error along the path. R represents the 

portion of actuators in optimization. By determining 

these matrices, the importance of each error or 

operator can be tuned. 

Now the cumulative goal function of the system is 

obtained as (13). It should be noted that the added term 

that expresses dynamics is equal to zero. 

(13) 

𝐻 =
1

2
𝑋(𝑡𝑓)

𝑇
𝐻𝑋(𝑡𝑓) 

+
1

2
∫ {

(〖𝑋(𝑡) − 𝑋𝑑(𝑡))〗𝑇𝑄(𝑡)(𝑋(𝑡) − 𝑋𝑑(𝑡)) +

𝑈𝑇𝑅(𝑡)𝑈 +

𝑃𝑇(𝐴(𝑡)𝑋(𝑡) + 𝐵(𝑡)𝑈(𝑡) − 𝑋(𝑡))̇
}

𝑡𝑓

𝑡0
𝑑𝑡  

Where P is the Lagrangian coefficient for the 

dynamic Euler equations for spatial variables and control 

inputs are obtained as (14) and (15). Here * index 

represents the optimal values: 

(14) 
∂H

∂x
−

𝑑

𝑑𝑡
(
𝜕𝐻

𝜕�̇�
) = 0 → �̇�∗(𝑡) = −

∂H

∂x
 

= −𝑄(𝑡)𝑥∗(𝑡) − 𝐴𝑇(𝑡)𝑝∗(𝑡) 

(15) 

∂H

∂u
−

𝑑

𝑑𝑡
(
𝜕𝐻

𝜕�̇�
) = 0 

→
∂H

∂u
= 𝑅(𝑡)𝑢∗(𝑡) + 𝐵𝑇(𝑡)𝑝∗(𝑡) = 0 

⇒ 𝑢∗(𝑡) = −𝑅−1(𝑡)𝐵𝑇(𝑡)𝑝∗(𝑡) 

By replacing the obtained 𝑢∗(𝑡) in the dynamic 

equation of the system for �̇�∗(𝑡) and solving the obtained 

equation with initial conditions as (16) and (17), the value 

of u* is obtained algebraically as (18) 

(16) 𝑥∗(𝑡 = 0) = 𝑥∗(𝑡0) 

(17) 𝑝∗(𝑡𝑓) = 𝐻𝑥∗(𝑡𝑓) 

(18) 𝑢∗(𝑡) = −𝑅−1(𝑡)𝐵𝑇(𝑡)𝐾(𝑡)𝑥∗(𝑡) 

To find the K value we need to solve the below 

equation, which expresses the Riccati differential 

equation [15]. 

�̇�(𝑡)
= −𝑄(𝑡) − 𝐾(𝑡)𝐴(𝑡) − 𝐴𝑇(𝑡)𝐾(𝑡)
+ 𝐾(𝑡)𝐵(𝑡)𝑅−1(𝑡)𝐵𝑇(𝑡)𝐾(𝑡) 

(19) 

 

The SDRE technique for the finite-horizon optimal 

regulator problem basically consists of representing any 

given dynamic system in the form of a state-dependent 

coefficient (SDC) and then solving the SDRE at small 

time intervals during the given finite-horizon period from 

the initial time to the final time. Therefore, to solve the 

optimal control problem in the SDRE method, the Riccati 

equation is solved at each moment, and in this finite time, 

the value of K(t) is considered constant and therefore 

�̇�(𝑡) is equal to zero [16]. Then we can drive Riccati 

algebra as (20) and the control law is expressed as (21). 

(20) 𝑄 + 𝐾𝐴 + 𝐴𝑇𝐾 − 𝐾𝐵𝑅−1𝐵𝑇𝐾 = 0 

(21) 𝑢∗ = −𝑅−1𝐵𝑇𝐾𝑥∗ 

Methods for Solving the Riccati Equation 
Since in an SDRE controller, the control coefficients must 

be recalculated at each time step by updating the state 

variables, it is necessary to solve the discussed Riccati 

equation frequently to obtain the P matrix. For this 

purpose, a fast algorithm is needed to solve this equation. 

There are many different methods to solve the 

algebraic Riccati equation [17, 18]. Some of these methods 

are analytical and some are recursive and numerical. 
Using recursive methods makes the task more 

complicated due to the need for an initial guess. Among 

the algebraic methods, the Schur method is used in most 

resources, so in this paper, this method is used to solve 

the Riccati equation depending on the state variables. 

Optimal Control Simulation 
In order to assess the performance of the designed 

controllers, a satellite attitude and transition motion 

simulator has been implemented in MATLAB 
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software. In this paper, the performance of the design 

controllers for Nadir pointing is compared. For each 

pointing mode, a function is defined to calculate the 

desired quaternion according to the position and 

attitude of the satellite. Therefore, in addition to 

solving the attitude motion equations of the satellite, 

the transitional motion equations of the satellite are 

also solved using the Runge-Kutta numerical solution 

method. 

In order to implement the LQR linear controller, it 

is necessary to linearize the dynamic equation around the 

nadir point, then by solving the Riccati equation obtained 

from the linearized matrix A, the gain matrix K can be 

calculated. Taylor series is used to linearize matrix A, 

and thus matrix A is simplified to the form (22). 

𝐴𝑎 ≈

[
 
 
 
 
 
 
        03×3        I3

03×3

0 0 0

0 0 −
𝐼𝑥
𝐼𝑦

0.0011

0
𝐼𝑥
𝐼𝑧

0.0011 0
]
 
 
 
 
 
 

 (22) 

By setting the amount of moment of inertia of a 

nanosatellite as (23), matrices A and B are obtained, 

which can be seen in (24) and (25): 

(23) 𝐼 ≈ [
0.17 0 0
0 0.19 0
0 0 0.13

] (𝑘𝑔.𝑚2) 

(24) 𝐴 ≈ [

03×3 𝐼3

03×3

0 0 0
0 0 −0.00098
0 0.00144 0

] 

(25) 𝐵 ≈ [

03×3

5.88  0        0
0    5.26      0
0        0  7.69

] 

By selecting the Q and R matrices, the Riccati 

equation can be solved and the control gain matrix K can 

be calculated. 
As mentioned earlier, Q and R must be real and 

symmetric matrices (R is a definite positive matrix and Q 

is a semi-definite positive matrix). 

According to the cost function J, matrix Q 

determines the error portion of the state variables and 

matrix R determines the activity portion of the actuators. 

The higher the Q/R ratio, the faster the convergence of 

the state variables occurs, but a higher R/Q ratio causes a 

lower energy consumption and a more distance from the 

saturation situation. A general method for selecting Q 

and R matrices is to choose them diagonally as (26): 

(26) 
𝑄 = [

𝑞1 … 0
⋮ ⋱ ⋮
0 … 𝑞𝑛

]      𝑅 = 𝜌 [
𝑟1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑟𝑚

] 

𝑞𝑖 =
1

𝑡𝑠𝑖(𝑥𝑖𝑚𝑎𝑥)2
 ,    𝑟𝑖 =

1

(𝑢𝑖𝑚𝑎𝑥)2
 ,    𝜌 > 0 

Here 𝑡𝑠𝑖 is the optimal settling time for the ith state 

variable, 𝑥𝑖𝑚𝑎𝑥 is the absolute maximum value of the ith 

state variable, 𝑢𝑖𝑚𝑎𝑥  is the absolute maximum value of 

the ith input, and ρ is an arbitrary controller coefficient 

selected by trial and error. 
Here the first three state variables are quaternions, 

the maximum value of each is equal to 1, and the next 

three state variables are the satellite’s angular velocity, 

which is 30 degrees per second just after release but 

after the settling mode is less than 0.3 degrees per 

second. The maximum torque of the reaction wheels is 

also considered to be equal to their saturation limit 

(about 0.0002 Nm). Given the settling time of 200 

seconds for the Nadir pointing, the Q and R matrices 

are expressed in (27). 

(27) 

𝑄 = 0.005

[
 
 
 
 
 
1   0   0   0     0     0     0
0   1   0   0     0     0     0
0   0   1   0     0     0     0
0   0   0   0   3.65 0     0
0   0   0   0   0   3.65   0
0   0   0   0   0    0  3.65]

 
 
 
 
 

 

𝑅 = 𝜌 ∗ 2.5 ∗ 107 [
1 0 0
0 1 0
0 0 1

] 

Finally, To find the control gain we can use either 

the lqr() function in Matlab, or solve the Riccati 

equation using the Schur method [19] in which we 

need to form Schur decomposition using the schur() 

syntax in Matlab. 

In order to make a correct comparison of PD, LQR, 

and SDRE controllers, the coefficients are selected in 

such a way that the settling time of all three controllers is 

the same, then the energy consumption is compared. As 

the PD controller does not work well without fine-tuning, 

it is not comparable to optimal controllers. To solve this 

problem, we obtain the optimal coefficients for the PD 

controller with the help of the LQR controller. 

As explained before, in the LQR controller, the 

control coefficients matrix is obtained by solving the 

Riccati equation, and the control action, which is the 

torque of actuators, is calculated using the quaternion 

error and the angular velocity error according to 

Equation (28). 

[

𝜏1

𝜏2

𝜏3

] = [

𝑘11 𝑘12 𝑘13

𝑘21 𝑘22 𝑘23

𝑘31 𝑘32 𝑘33

|

𝑘14 𝑘15 𝑘16

𝑘24 𝑘25 𝑘26

𝑘34 𝑘35 𝑘36

] [
𝛿𝑞

𝜔 − 𝜔𝑑𝑒𝑠
] 

[

𝜏1

𝜏2

𝜏3

] = [𝐾𝑞 𝐾𝜔] [
𝛿𝑞

𝜔 − 𝜔𝑑𝑒𝑠
]    

𝐾𝑞 = 𝑛𝑜𝑟𝑚 [

𝑘11 𝑘12 𝑘13

𝑘21 𝑘22 𝑘23

𝑘31 𝑘32 𝑘33

] 

    
    , 𝐾𝜔

= 𝑛𝑜𝑟𝑚 [

𝑘14 𝑘15 𝑘16

𝑘24 𝑘25 𝑘26

𝑘34 𝑘35 𝑘36

]                         (28) 

In (28), the coefficients Kq and Kω are the optimal 

coefficients for the PD controller, which were considered 

as the average (norm) coefficients of the first and the 

second part of the K matrix. Now we apply these 

coefficients to the PD controller. 
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First, we compare the behaviour of the controllers for a 

major maneuver with large initial angles and angular 

velocities error (180 degrees tilt and angular velocities of 

30 degrees per second in each direction) in order to point 

to the Nadir: 

 PD controller with optimal gain: Kp=0.002 & 
Kd=0.1738 

 

Fig 1. Quaternion error changes for Nadir pointing maneuver 

with a large initial error by the PD controller 

 
Fig 2. Energy changes, for Nadir pointing maneuver with a 

large initial error by the PD controller 

 LQR controller with convergence coefficient of 
ρ=5×10-5:  

 

Fig 3. Quaternion error changes, for Nadir pointing maneuver 

with a large initial error by the LQR controller 

 

Fig 4. Energy changes, for Nadir pointing maneuver with a 

large initial error by the LQR controller 

 SDRE controller with convergence coefficient 

of ρ=5×10-5:  

 

Fig 5. Quaternion error changes for Nadir pointing maneuver 

with a large initial error by the SDRE controller 

 
Fig 6. Energy changes, for Nadir pointing maneuver with a 

large initial error by the SDRE controller 

As can be seen in the figures, for the mentioned 

maneuver, the energy consumption of the SDRE 

controller is slightly less than LQR and the energy 

consumption of the LQR controller is also slightly better 

than the energy consumption of the PD controller with 

optimal coefficients. 
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In the next step, the behaviour of the controllers 

for small maneuvers around the equilibrium point 

(less than 60 degrees tilt and angular velocity of 

0.2 degrees per second in each direction) is 

compared: 

 PD controller with optimal gain: Kp=0.002 & 
Kd=0.1738 

 
Fig 7. Quaternion error changes, for small maneuver in Nadir 

pointing by the PD controller 

 
Fig 8. Angular velocity changes, for small maneuver in Nadir 

pointing by the PD controller 

 

Fig 9. Torque of reaction wheels, for small maneuver in Nadir 

pointing by the PD controller 

 

Fig 10. Energy changes, for small maneuver in Nadir pointing 

by the PD controller 

 LQR controller with convergence coefficient 

of ρ=5×10-5:  

 

Fig 11. Quaternion error changes, for small maneuvering in 

pointing on the Nadir by the LQR controller 

 
Fig 12. Angular velocity changes, for small maneuver in Nadir 

pointing by the LQR controller 

 
 Fig 13. Torque of reaction wheels, for small maneuver in 

Nadir pointing by the LQR controller 
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Fig 14. Energy changes, for small maneuver in Nadir pointing 

by the LQR controller 

 SDRE controller with convergence coefficient 

of ρ=3×10-5:  

 

Fig 15. Quaternion error changes, for small maneuver in Nadir 

pointing by the SDRE controller 

 

Fig 16. Angular velocity changes, for small maneuver in Nadir 

pointing by the SDRE controller 

 

Fig 17. Torque of reaction wheels, for small maneuver in 

Nadir pointing by the SDRE controller 

 

Fig 18  . Energy changes, for small maneuver in Nadir pointing 

by the SDRE controller 

In contrast to the previous case, for small 

maneuvers, the energy consumption of the PD controller 

with optimal coefficients and LQR was lower than 

SDRE. 

Optimal Quaternion Feedback Control 

The mentioned PD controller has proof of stability 

and always convergence. But this controller does 

not guarantee the shortest path to the final 

orientation. This problem occurs when the error of 

the fourth component in the quaternion is negative. 

But in the Quaternion feedback controller, one term 

is added to the PD controller based on the sign of 

the fourth quaternion element, which increases the 

convergence speed and converts the control law to 

(29) [13]: 

𝐿 = −𝑘𝑝𝑠𝑖𝑔𝑛(𝛿𝑞4)𝛿𝑞1:3 − 𝑘𝑑(𝜔 − 𝜔𝑑𝑒𝑠) (29) 

In this equation, 𝛿𝑞4 is calculated from (30): 

𝛿𝑞4 = 𝑞𝑇𝑞𝑑𝑒𝑠  (30) 

In the LQR controller, the term 𝑠𝑖𝑔𝑛(𝛿𝑞4) can 

also be used to improve the convergence speed and 

therefore the control equation can be defined as 

equation (31): 

𝑈 = −𝐾 [
𝑠𝑖𝑔𝑛(𝛿𝑞4)𝛿𝑞

𝜔 − 𝜔𝑑𝑒𝑠
] (31) 

Here, matrix K is the optimal coefficients 

matrix. Now we can compare the performance of the 

new controller with a conventional LQR controller 

with the same control coefficients for Q and R. 

Simulations have been performed for Nadir pointing 

with initial conditions of [0.5 0 0 0.867] for 

quaternion and [0.2 0.2 0.2] for angular velocity. The 

saturation limit has also been considered for the 

reaction wheels. 

 LQR controller simulation without using the 

𝑠𝑖𝑔𝑛(𝛿𝑞4) term: 
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Fig 19. Quaternion error changes, in the LQR controller 

without using the sign term in the Nadir pointing 

 
Fig 20. Changes in angular velocity, in the LQR controller 

without using the sign term in the Nadir pointing 

 LQR controller simulation using 𝑠𝑖𝑔𝑛(𝛿𝑞4) 

term: 

 
Fig 21. Quaternion error changes, in the LQR controller with 

the sign term in the Nadir pointing 

 
Fig 22. Changes in angular velocity, in the LQR controller 

with the sign term in the Nadir pointing 

 
Fig 23. Energy consumption changes in the LQR controller 

using the sign term 

As can be seen, the maneuvering speed has 

significantly increased since the convergence time has 

increased from 400 seconds for the conventional LQR 

controller to 250 seconds for the new controller. 

Now we can inspect energy consumption in two 

controllers: 

 
Fig 24. Energy consumption changes in the LQR controller 

without using the sign term 

As can be seen, energy consumption has decreased 

by up to 30% in the new controller. 

In the case of the SDRE controller, it is also possible 

to use the 𝑠𝑖𝑔𝑛(𝛿𝑞4) term. Figures 25 to 28 show the 

performance of the SDRE controller with and without the 

𝑠𝑖𝑔𝑛(𝛿𝑞4): 

 SDRE controller simulation without using the 

𝑠𝑖𝑔𝑛(𝛿𝑞4) term: 

 
Fig.25. Quaternion erro changes, in the SDRE controller 

without using the sign term in the Nadir pointing 
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Fig 26. Angular velocity changes, in the SDRE controller 

without using the sign term in the Nadir pointing 

 SDRE controller simulation with the 𝑠𝑖𝑔𝑛(𝛿𝑞4) 

term: 

 
Fig 27. Quaternion error changes, in the SDRE controller with 

the sign term in the Nadir pointing 

 

Figure 28. Angular velocity changes, in the SDRE controller 

with the sign term in the Nadir pointing 

As can be seen, similar to the LQR controller, the 

maneuvering speed has been significantly increased and 

the convergence time has improved from 450 seconds for 

the conventional SDRE controller to 300 seconds for the 

new controller. 

Now we can take a look at two controllers in terms 

of energy consumption: 

 
Fig 29. Changes in power consumption, in the SDRE 

controller, using the sign term 

 
Fig 30. Changes in power consumption, in the SDRE 

controller without using the sign term 

Unexpectedly, energy consumption has not 

improved by using the 𝑠𝑖𝑔𝑛(𝛿𝑞4) term. It can be inferred 

that due to the nonlinear nature and the possibility of 

adjusting coefficients at each time step, the SDRE 

controller does not need to use the sign term and this term 

has no effect on energy consumption. 

Control Implementation with LQG 

Observer 

In real satellite conditions, an estimator is used to 

determine the state variables. So far in all 

simulations, dynamic equations and state variables 

were calculated by the designed satellite simulator 

software, but in a real problem, the state variables are 

estimated from the information obtained by sensors. 

The best satellite estimation algorithm is the Kalman 

filter. In this algorithm, in addition to estimating the 

state variables from different sensory data, measured 

data is filtered and noise and bias effects are reduced. 

In the present problem, an Extended Kalman Filter 

algorithm (EKF) is used to determine the attitude of 

the satellite. 
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In a real case, sensor noise always affects the 

performance of the estimator and controller. The 

number, type, effects of noise, and bias of sensors can 

be set in the utilized satellite simulation software1. The 

implemented Kalman algorithm uses magnetometer 

and gyroscope data. The effect of noise and bias of the 

mentioned sensors is also considered according to the 

sensors’ datasheet. 

First, the PD controller with the optimal coefficients 

obtained from the previous section is used to simulate the 

Nadir pointing: 

 
Fig 31. Smooth angular velocity changes for the PD controller 

with optimal coefficients along with the observer in the Nadir 

pointing 

 

Fig 32. Quaternion error changes for the PD controller with 

optimal coefficients along with the observer in the Nadir 

pointing 

As can be seen, after 2000 seconds the 

controller has not yet succeeded in pointing with the 

required accuracy and the permanent angle error is 

still high. 

Figure 30 shows the estimator error in this case: 

                                                           
1. Sharif Nano Satellite Simulator 

 

Fig 33. Changes in estimator error during PD control 

operation with optimal coefficients in the absence of a solar 

sensor in the Nadir pointing 

The considerable estimation error is caused by the 

high magnetometer and gyro sensors’ noise. 

Now the same maneuver is done with a normal LQR 

controller. The results are similar to the PD controller: 

 
Fig 34. Smooth angular velocity changes for a typical LQR 

controller with an observer in the Nadir pointing 

 

Fig 35. Quaternion error changes for a typical LQR controller 

with an observer in the Nadir pointing 
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Fig 36. Estimation error changes during normal LQR control 

operation in the absence of a solar sensor in the Nadir pointing 

However, the estimator error has improved a bit.  

Now we can evaluate the LQR controller with the 

𝑠𝑖𝑔𝑛(𝛿𝑞4) coefficient: 

 
Fig 37. Smooth angular velocity changes for the LQR 

controller, including the sign term with the observer in the 

Nadir pointing 

 

Fig 38. Quaternion error changes for the LQR controller, 

including the sign term with the observer in the Nadir pointing 

 

Fig 39. Changes in estimator error during LQR control 

operation including sign term in the absence of a solar sensor 

in the Nadir pointing 

As can be seen, the convergence occurred in less 

than 1000 seconds, which indicates the optimal 

performance of the LQR controller including the 

𝑠𝑖𝑔𝑛(𝛿𝑞4) term.The SDRE controller performance is 

also examined below: 

 

Fig 40. Smooth angular velocity changes for the SDRE 

controller with the observer in the Nadir pointing 

 

Fig 41. Quaternion error changes for the SDRE controller with 

the observer in the Nadir pointing 
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Fig 42. Changes in estimator error during SDRE control 

operation in the absence of a solar sensor in the Nadir pointing 

As can be seen, the convergence speed of the SDRE 

controller is higher than other controllers. 

Conclusion 
In this paper, a PD controller with optimal coefficients, 

as well as LQR, and SDRE controllers were used to 

control the attitude of a nanosatellite to perform various 

maneuvers pointing toward Nadir. 

In the first step, PD, LQR, and SDRE controllers 

were investigated without considering the estimator and 

by solving the differential equations of the satellite 

dynamics. In order to fine-tune the PD controller and 

make it comparable with the two other controllers, 

proportional and derivative coefficients were extracted 

with the help of the LQR controller. To compare the 

performance of the controllers, the coefficients of all 

three were adjusted so that the convergence time remains 

in the same range, and then the energy consumption of 

the actuators in each controller was compared. 

Results of the simulations showed that for extreme 

maneuvers, the energy consumption for the SDRE 

nonlinear controller was better than the LQR and PD 

linear controllers. But for small maneuvers around the 

Nadir, the PD and LQR linear controllers perform better 

than the SDRE nonlinear controller. 

In the second part of the simulations, the controller 

is used along with a Kalman filter estimator and the noise 

and bias of the sensors are also added to the system. This 

time, the controller receives its input from the estimator. 

Therefore, the simulation conditions become much more 

realistic. 
In our problem, an Extended Kalman filter is used as 

an estimator, which uses magnetometers, and gyroscope 

sensors to determine the attitude of the satellite. After 

simulations, it was shown that the convergence speed of 

nonlinear SDRE and LQR with quaternion feedback 

controllers is much higher than PD and LQR linear 

controllers. Meanwhile, the SDRE controller has the best 

performance and lowest power consumption. 

In a major maneuver, i.e., a maneuver with considerable 

initial error, the SDRE control has better performance. 

Because in this case, the linearization performed for the 

LQR controller is not accurate. But for small 

maneuvers, the LQR controller combined with 

quaternion feedback works well. It was also observed 

that the SDRE nonlinear controller performed much 

better than the linear controllers when using the 

estimator with the presence of noise. 

Nevertheless, the disadvantage of the SDRE 

controller and what limits its usage is the high 

computational cost. By defining different scenarios and 

determining control strategies by a supervisor, the type 

of controller, or even the control coefficients can be 

changed based on different conditions and maneuvers, 

and the SDRE controller can be utilized only in some 

required conditions to achieve the best performance, the 

highest convergence speed and the lowest energy 

consumption. 
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