نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

دانشگاه جامع امام حسین (ع) دانشکده فنی و مهندسی، تهران، ایران

چکیده

به‌دست آوردن ضرایب آیرودینامیکی و مشتقات کنترل و پایداری نقش مهمی را در طراحی وسایل پرنده ایفا می‌نماید. بیشترین کاربرد این ضرایب در شبیه‌سازی مسیر پروازی و تعیین تغییرات سرعت دورانی راکت و طراحی سیستم هدایت و کنترل پرنده‌های هدایت‌شونده می‌باشد. در این مقاله، به نحوة محاسبة ضریب دمپینگ چرخش مدل استاندارد بِیسیک فینِر در ماخ‌ها و زوایای حملة مختلف با استفاده از روش عددی شبکه سرشی پرداخته شده است. همچنین، اثر پارامترهای تأثیر گذار مانند دامنه و دورة تناوب (فرکانس) نوسان، گام زمانی حل عددی و تعداد تکرار در هر گام زمانی برای تعیین ضرایب میرایی گشتاور چرخش بررسی شده است. مدل‌سازی و شبکه‌بندی هندسه توسط نرم افزار آی سی اِم سی‌اف‌دی و تحلیل جریان به‌وسیلة نرم‌افزار انسیس فلوئنت انجام شده است. در این شبیه‌سازی از معادلات جریان اویلر، تراکم‌پذیر و ناپایا استفاده و برای حل عددی از روش حجم محدود و حل‌کنندة بر مبنای چگالی با فرمول‌بندی صریح و دقت مرتبة اول بهره گرفته شده است. برای ارزیابی صحت نتایج حاصل از روش عددی، مقایسه‌ای با داده‌های تست تجربی و کد مهندسی MD صورت گرفته است که نشان می‌دهد، نتایج به‌دست آمده از دقت خوبی نسبت به داده‌های تجربی برخوردار است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the Effective Numerical Solution Parameters in Calculating the Roll Damping Coefficient

نویسندگان [English]

  • Mohammad Moumivand
  • hasan mohammadkhani
  • javad heydari
  • mohammad hosein vaezi

Imam Hossein University, Faculty of Engineering, Tehran, Iran

چکیده [English]

Determining aerodynamic coefficients and control and stability derivatives play an
important role in the development of flight vehicles. In this paper, roll damping coefficient
of BASIC FINNER standard model is determined at different attack angles and with
various Mach numbers using numerical Sliding Mesh method. Also, the impact of the
effective parameters such as amplitude and frequency of oscillation, time step and number
of iteration in each step in numerical solution are investigated to determine the roll
damping coefficients. Geometry modeling and grid generation and the flow analysis are
done by ANSYS CFX and ANSYS FLUENT software, respectively. In this simulation,
Euler’s flow equations, compressible and unsteady flow, finite volume method and density
based solver with explicit formulation and first-order accuracy for a numerical solution
are used. To evaluate the results of a numerical study, a comparison is made between the
experimental data and MD results, indicating that the results have a good accuracy.

کلیدواژه‌ها [English]

  • Numerical analysis
  • Roll damping coefficient
  • Amplitude and frequency of oscillation
  • Time step
  • Experimental data
[1]    Visbal, M.R., “Effect of Compressiblity on Dynamic Stall of Pitching Airfoil,” AIAA Paper, 1988.
[2]    Lin, C.Q. and Pahlke, K., “Numerical Solution of Euler Eqution for Aerofoils in Arbitrary Unsteady Motion,” Aeronautical Journal, Vol. 98, Issue 976, 1994, pp. 207-214.
[3]    Gaitonde, A.L. and Fiddes, S.P. “A Three- Dimentional Moving Mesh Method for the Calculation of Unsteady Transonic Flows,” Aeronautical Journal, Vol. 99, No. 984, 1995, pp.150-160.
[4]    Gaitonde, A.L. and Fiddes, S.P. “A Dual-Time for the Solution of the Unsteady Euler Equation”, Aeronautical Journal, Vol. 98, Issue 976, 1994 , pp. 283-291.
[5]    Batina, J.T., “Unsteady Euler Airfoil Solution Using Unstructured Dynamic Meshes,” AIAA Journal, Vol. 28, No. 8, 1990, pp.1381-1388.
[6]    Regan, F.J., Roll Damping Moment Measurements for the Basic Finner at Subsonic and Supersonic Speeds, NAVORD Report 6652, U.S. Naval Ordnance Laboratory, March 1964.
[7]    Uselton, B.L. and Leroy, M.J., “Experimental Missile Pitch and Roll Damping Characteristics at Large Angles of Attack,” Journal of Spacecraft and Rockets, Vol. 14, No. 4, 1977, pp. 241-247.
[8]    Oktay, E. and Hasan, U.A., “CFD Predictions of Dynamic Derivatives for Missiles,” AIAA Paper, Vol. 276, 2002, pp. 14-17.
[9]    Murman, S.M., “Reduced-Frequency Approach for Calculating Dynamic Derivatives,” AIAA Journal, Vol.45, No. 6, 2007, pp. 1161-1168.
[10]  Hyung Park, S., Kim, Y. and Hyuk Kwon, J., “Prediction of Dynamic Damping Coefficients Using Unsteady Dual-Time Stepping Method,” 40th AIAA Aerospace Sciences Meeting & Exhibit,  January 2002.
[11]  Shantz, Irving and Robert Groves, T., Dynamic and Static Stability Measurements of the Basic Finner at Supersonic Speeds, Technical Report NAVORD Report 4516, U.S. Naval Ordnance Laboratory, September 1960.
[12]  Bhagwandin, V.A., Sahu, J., “Numerical Prediction of Pitch Damping Stability Derivatives for Finned Projectiles,” Journal of Spacecraft and Rockets, Vol. 51, No. 5, 2014, pp. 1603-1618.
[13]  Xian-Xu, Y., Han-Xin, Zh. and Yu-Fei, X., “The Pitching Static/ Dynamic Derivatives Computation Based on CFD Methods,” ACTA AERODYNAMICA SINICA, Vol. 23, No. 4, 2005, pp. 458 – 463.
[14]  Hashimoto, A., “Unsteady Analysis of Aerodynamic Derivatives on Standard Dynamics Model,”  51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace, Texas, USA 7-10 January 2013.
[15] Rasi Marzabadi, F. and Kamali Moghaddam, R., “Longitudinal Dynamic Derivatives of an Airfoil under Pitching and Plunging Oscillations in Wind Tunnel,” Modares Mechanical Engineering, Vol. 14, No. 10, 2014, pp. 159-166 (In Persian).
[16]  Ye, Y., Zhao, Z., Tian, H. and Zhang, X., “The stability Analysis of Rolling Motion of Hypersonic Vehicles and Its Validations,” Science China Physics, Mechanics & Astronomy, Vol. 57, Issue 12, 2014, pp. 2194–2204.
[17]  Fangjian, W. and Chen, L., “Numerical Prediction of Stability Derivatives for Complex Configurations,” Procedia Engineering, Vol. 99, No. , 2015, pp. 1561-1575.
[18] Liu, X., Wei, L. and Yunfei, Zh., “Navier–Stokes Predictions of Dynamic Stability Derivatives for Air-Breathing Hypersonic Vehicle,” Acta Astronautica1, Vol. 118, 2016, pp. 262-285.