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Nonsingular terminal sliding mode (NTSM) guidance for intercepting the desired line 
of sight (LOS) angle in terminal phase is proposed in this paper. In order to satisfy the 
predefined LOS angle and to intercep into target, a nonsingular terminal sliding variable 
is introduced. In reaching phase, in the presence of uncertainties such as target 
maneuvers, robust NTSM guidance law is designed in order forzeroing the sliding 
variable in finite reaching time. Then, in sliding phase, due to introducing nonsingular 
terminal sliding variable, finite time stability of line of sight angle and line of sight 
angular rate is granteed without singularity in commanded acceleration as control signal 
Numerical simulations are presented to illustrate the potential of the proposed guidance 
law. 
Keywords: Guidance law; Impact angle, NTSM control, Parallel navigation 

Nomenclature 12 3 

X  State Variables Vector 
(X)f  Nonlinear Function 

S  Sliding Variable 
  Weighting Constatnt in Sliding Variable 

reachingu  Reaching Control 

reachingt  Reaching Time 

q  Line of Sight Angle 
q  Line of Sight Rate 

R  Relative Range 

R  Closing Velocity 

MA  Missile Lateral Accelaration 

TA  Target Lateral Accelaration 

Introduction 

The proportional navigation guidance law is one of the 
most widely employed strategies in tactical homing 
interceptors. The basic principle of PN is to nullify the 
line of sight rate based on parallel navigation idea. In 
the ideal case of non-maneuvering targets and zero lag 
autopilot, PN is an optimal guidance law, but it is not 
capable ofcontrolingthe impact angle [1], [2]. 
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Using sliding mode(SM) control and based on 
parallel navigation, we can design a nonlinear and 
robust guidance law for target maneuvers [3]. This 
theory has been applied to many guidance problems. 
In [3-7],first order SM guidance laws  and in [8] and 
[9], guidance laws design using second order SM 
control were studied. 

When using a missile to intercept a target, the 
impact angle is often important. In particular, in order 
to increase the effectiveness of warheads against some 
targets such as tanks, a specific impact angle is 
required. Therefore, a guidance law which can 
guarantee a specified impact angle is very desirable 
[10]. Impact angle guidance laws have been presented 
in the literature. In [11], an impact angle guidance law 
is achievedby numerically solving the two point 
boundary value problem. In [12], the authors 
analytically derived a bias termfromthe PN guidance 
law to account for impact angle constraints. Adaptive 
guidance laws for obtaining specified impact angles 
and applying them to the reentry guidance of a 
hypersonic gliding vehicle is introduced in [13]. An 
integrated guidance and control approach to solving 
the impact angle problem through a backstepping 
method is presented in [14]. In [15], optimal control 
theory with a weight on the time-to-go is employed to 
solve the guidance problem. The combination of 
Lyapunov stability theory and a parameter 
optimization approach areutilized in [16]. In [17], the 
impact angle problem using a SDRE approach, where 
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the state weighting matrix is assumed to be a function 
of the time-to-go, is solved.  

Because of nonlinearity and robustness 
properties of SM control theory, SM guidance law for 
intercepting thespecified angle is desirable. In [18], 
the authors presented conventional SM control theory 
based guidance laws to intercept non-maneuvering 
targets at a desired impact angle. The desired impact 
angle, defined in terms of a desired line of sight 
angle, is achieved by selecting the missile lateral 
acceleration to enforce sliding variable on a 
conventional sliding surface based on LOS angle and 
its rate. A three-dimensional guidance law with angle 
constraint based on conventional SM control is 
designed in [19].  

In conventional SMC, the most commonly used 
sliding variable is the linear which is based on linear 
combination of the system states by using an 
appropriate time-invariant coefficient. Then,the SM 
controller is designed which drives the system to 
reach and remain on the linear sliding surface in 
finite reaching time. Except for sliding phase in 
which the transient response can be made faster by 
utilizing a larger valued coefficient in the linear 
sliding variable, the system states cannot converge to 
the equilibrium point in finite time. In other words, 
an arbitrary linear manifold is considered a sliding 
variable which can guarantee the asymptotic or 
exponential stability in sliding phase. Therefore, the 
main disadvantage of conventional SMC is that the 
system states cannot reach the equilibrium point in 
finite time [20, 21]. Recently, finite time stability and 
finite time control have been constructed for some 
systems. Finite time stable systems might enjoy not 
only faster convergence but also better robustness 
and disturbance rejection properties [22]. Instead of a 
linear sliding variable, there exists a terminal sliding 
mode(TSM) control with a nonlinear sliding 
variablewhich grantees finite time stability in sliding 
phase. The TSM was developed by adding the 
nonlinear fractional power item into the SM to offer 
some superior properties, such as finite time 
convergence as well as faster and better tracking 
precision [21, 23]. TSM and finite time stability 
theories are used for designing impact angle guidance 
laws in the literature [10, 24-26].  

However, there is an intrinsic singular problem in 
TSMC due to using fractional power functions as the 
sliding variable. The singularity problem limits the 
applications of the TSMC and therefore, NTSM 
method is proposed to avoid that singularity[27, 28]. In 
[27], a method to overcome the singularity problem of 
TSM control systems isproposed and in [28], a non-
singular fractional TSM control is presented. Also, in 
[29], Non-singular TSM Guidance and Control with 
Terminal Angle Constraints is explained. However,this 
guidance law is designed for intercepting non-
maneuvering targets.  

In this paper, a newguidance law is developed 
using NTSM control theory to intercept desired LOS 
angle. By applying the proposed guidance law, the 
finite time convergence of the LOS angle to desired 
value and its rate to zero in the presence of uncertainty 
such as target maneuvers are guranteed. First, the SM 
controller can curb the state trajectory to the 
nonsingular nonlinear terminal sliding surface in finite 
reaching phase time and then because of introducing 
the particular nonlinear sliding surface, the state 
variables converge to equilibrium point in finite 
sliding phase time without singularity in commanded 
acceleration as control signal. For removing the 
chattering in commanded acceleration, continuous 
approximationmethod is used.  

The paper is organized as follows: In Sec. II, the 
SM control theory is introduced and then modeling of 
relative kinematic will be elaborated. Sec. III proposes 
the new guidance law. Numerical simulation results 
are shown in Sec. IV and conclusions are presentedin 
Sec. V. 

SM Control 

Consider a nonlinear system: 
( ) ( )nX f X u                  (1) 

( ) ,nom un unf X f f f                   (2) 

Where nomf is a known nonlinear part, unf  is a 

bounded uncertainty, ( 1)[ ... ]n TX x x x   is 

system state and u  is the control input. In SM scheme, 
first a sliding variable is introduced using system 
errors. Typical SMC consists of a reaching mode, 
during which the sliding variable moves to the sliding 
surface, and anSM, during which the sliding variable is 
confined to the sliding surface and has no variation 
from sliding surface [30-32]. Therefore, designing SM 
controller is presented in section (A) in reaching phase 
and then in sliding phase, the sliding variable is 
introducedin section (B). 

Reaching Phase  
In reaching phase, SM controller is designed for 
zeroing sliding variable or reaching sliding surface 
(S=0). SM controller makes S  equal to zero in finite 
reaching time and then, maintains the condition 0S   
for all future time. In conventional SMC, the control 
input is designed as follows: 

eq reachu u u                   (3) 

equ is the equivalent control determined to cancel 

the known terms on the first derivation of S in system 
without uncertainty and reachu  is the reaching control. 

Where uncertainties exist, using:  

21

2
V S                  (4) 

as a Lyapunov function candidate for S , the reaching 
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control is selected as follows: 

( )rechingu KSgn S                  (5) 

where K is the reaching term. A sufficient 
condition to guarantee the finite time attractiveness of 

0S   is to ensure finite time stability condition as: 

V SS S                    (6) 

where  is a strictly positive constant, which implies that: 

(0)
reaching

S
t


                                                                      (7) 

In order to satisfy sliding condition (6) despite 
uncertainty on the dynamics system (1), yield 
K                     (8) 

Where   denotes the maximum system 
uncertainty.  

Finally, SM controller is designed as follows: 

  ( )equ u Sgn S                    (9) 

The SM controller contains the discontinuous 
nonlinear function ( )Sgn S . This function in the control 

input can cause chattering problem. One approach to 
eliminate chattering is to use a continuous 
approximation of the discontinuous SM controller [30-
32]. In this paper, we approximate ( )Sgn S  function 

by ( )Tanh S  function. Hence, the approximation of 

SM controller is as: 

  ( )equ u Tanh S                  (10) 

The value of parameter   in this function is for 

adjusting the boundary layer width. 

Sliding Phase 
The type of stability in this phase is dependent on the type 
of combination of the system states and introduction of 
the sliding variable.  In conventional SM control scheme, 
linear sliding variable has been introduced as: 

1n
d

S X
dt




   
 

               (11) 

where   is a strictly positive constant, 

dX X X   and dX  is desired state vector. Assume 

that controller must be designed in a waythat the 
system state reaches thedesired state. The tracking 
problem for dX X  is equivalent to making 0S 
[31]. For example, consider a nonlinear normal system 
with relative degree 2 as follows: 

1 2

2 1 2 1 2( , ) ( , ) ,

x x

x f x x g x x u w w 

   




            (12) 

For stabilization with conventional SMC, the linear 
sliding variable according to (11) is introduced as: 

2 1S x x                                (13) 

The dynamic behavior of (13) on the sliding 
surface is 

1 1 2 1 0S x x x x                                  (14) 

In the phase plane (x1–x2 plane), S=0 represents 
a line, called sliding surface, passing through the 
origin with a slope equal to  . In the sliding mode 
(S=0) we have 

1 1x x                                (15) 

Then, the first state variable is expressed as 

1 1( ) (0) tx t x e                                (16) 

It should be noted that   must be a positive real 
constant for achieving system stability. As shown in 
(16), the state variable 1x  is asymptotically or 

exponentially stable. For finite time stabilizing the 
state variables, TSM control is designed byintroducing 
nonlinear sliding variable as follows [27]: 

2 1
p q

S x x                                (17) 

where 0  is a design constant, both p and q are 
positive odd integers and satisfy the following 
condition [33]: 

1 2p
q                                (18) 

Another equivalent form of the TSM manifold 
can be expressed as follows [27]: 

2 1 1( )S x x Sgn x
                               (19) 

where 0 1  . 

When the sliding variable (19) reaches thesliding 
surface S=0, motion of system can be described by the 
following nonlinear differential equation: 

2 1 0
p q

S x x                                   (20) 

that is: 

1 1
p q

x x                                               (21) 

If the control u is designed to make system (14) 
satisfy the existence condition of the sliding-mode 
(11), the system can reach S = 0 within finite-time. 
Suppose that tris the time when S reaches zero from an 
initial condition (0) 0S  , that is, ( ) 0, rS t t t   . 

From equations (20) and (21), it can be seen that if the 
system states (x1, x2) reach the sliding surface S = 0, 
then they will stay on S = 0 and converge to zero 
within finite-time. The system states in the ideal 
sliding-mode can be expressed [27, 33]: 

1

1 1
1

2 1

( )
( ) sgn ( )( )

0

( ) ( )

p
q p q

p
r r s

s

q
p

p q
x t t x t t tx t p

t t

x t x t







      



             

(22) 

wherets (sliding time) can be calculated as 
follows: 

1
1 ( )

( )
q p

s r

p
t x t

p q



                             (23) 

And tris the time when S reaches zero from an initial 
condition.  
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In order to eliminate the chattering in the SMC, a 
saturation function sat(·) is generally used to replace 
the signum function sgn(·). The relationship between 
the steady-state errors of the SMC system and the 
width of the layer   surrounding the sliding-mode 

manifold S = 0 is given by 

1

2

( )
subject to  

( ) 2

p
q

x t
S

x t






        
 

            (24) 

Note that there are three parameters which need 
to be designed for TSM manifold (19), p, q and   (or 
two parameters   and   for TSM manifold (21)). 

These parameters can be determined based on the 
requirements ofthe fastness (23) or the steady-state 
tracking precision (24) of the sliding-mode system. 

Control u in system (14) can be designed as 
follows: 

11
21( ) ( ) ( )sgn( )q p

w
p

u g x f x x x S
q

    
     

 
         (25) 

where w is the bound of uncertainty. It can be 

seen in the TSM control (25) that the second term 

containing 1
21

q px x  may cause a singularity to occur 

if 2 0x  , when 1 0x  . The singularity problem may 

occur in the reaching phase when there is insufficient 
control to ensure that  2 0x  , when 1 0x  .  

In order to overcome the singularity problem in 
the conventional TSM systems, several methods 
have been proposed. For example, one approach is 
to switch SM between TSM and linear hyperplane-
based SM. Another approach is to transfer the 
trajectory to a pre-specified open region where TSM 
control is not singular. These methods adopt 
indirect approaches to avoid the singularity. In this 
paper, a simple NTSM is used, which is able to 
avoid this problem completely. The NTSM model is 
described as follows [27, 33]: 

1 2
p q

S x x                                (26) 

For this sliding variable, the nonsingular TSM is 
designed as: 

121
22( ) ( ) ( ) ( )

q
q p p

w
p p

u g x f x x x Sgn S
q q

  


  
    

     

(27) 

It should be noted that the NTSM control (27) is 
always nonsingular in the sliding phase [27, 33]. 

Guidance Law Design 

In this section, first, the model of guidance loop dynamical 
system is introduced and then, NTSM guidance law for 
intercepting the desired impact angle is designed. 

Modeling Guidance Loop  
In this section, a model for guidance loop is formulated. 
Consider a two-dimensional interceptor and target 
engagement as shown in Fig. 1.  

 

Fig. 1. Missile-target engagement geometry 

It is assumed that the missile and the target are 
point masses moving in plane. Then, the missile-target 
engagement model shown in Fig. 1 can be described 
by the following nonlinear differential equations [34]: 

( ) cos( ) cos( )d
T T M Mdt

R R V q V q           (28) 

( ) sin( ) sin( )d
T T M Mdt

q q V q V q             (29) 

1
( )d

M M Mdt
M

A
V

                                (30) 

1
( )d

T T Tdt
T

A
V

                 (31) 

where R is the relative range between target and 
interceptor q  is the LOS angle with respect to a reference 

axis;q  is the line of sight rate; MV  and TV  represent the 

interceptor and target velocities, respectively; M  and T  

represent the flight path angles of the target and missile, 
respectively; and MA and TA  represent the interceptor 

and target accelerations, respectively. 
Differentiating Eqs. (28) and (29) with respect to 

time yields [3, 34]: 
2

, ,M R T RR R A A                                 (32) 

 , ,
1

2 M q T qq R A A
R

                  (33) 

where, ,T RA  and ,M RA  denote the accelerations 

of the target and missile along the LOS, respectively; 
and ,T qA and ,M qA  denote the accelerations of the 

target and missile normal to the LOS, respectively 
[30]. By considering state variables as 

1 2 3 4x x x x R R q q     
  , control input 

 1 2 , ,M R M qu u A A  , outputs    1 2y y R q  and 

 1 2 , ,T R T qw w A A   as uncertainty, the state equations 

are rewritten as: 
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1 2

2
2 1 4 1 1

3 4

2 4
4 2 2

1 1 1

2 1 1

x x

x x x u w

x x

x x
x u w

x x x



  


   









             (34) 

The first object of guidance law is intercepting 
thetarget with desired angle ( 3 3dx x ) and another 

object is to nullify the LOS rate ( 4 0x  ) in finite 

time. For these objectives in the next section,NTSM 
control is used for designing 2u . Also, assume that the 

interceptor has no accelerations along LOS and 

, 0M RA  . 

Impact Angle NTSM Guidance Law 

In this section, the design procedure of NTSM 
guidance law is presented for the system equations 
given by (34). For these, propose we start with 
introducing nonsingular terminal sliding variable as 
follows: 

3 4 4( )p q
dS x x x                (35) 

Therefore, the sliding dynamics is achieved: 
1

3 44

1 2 4
4 2 24

1 1 1

1 1

p q

p q

p
S x x

q

x xp
x u w

q x x x

x

x









  

 
    

 

  

          (36) 

Now, taking the controller 2u in (38) as follows: 

2 ( )equ u KSgn S                               (37) 

where equ is chosen to cancel the known terms 

on the right-hand side of (36), and (9) is considered as 
a Lyapunov function candidate for S .  

Then, the reaching control is selected as (10) and 
a sufficient condition to guarantee the finite time 
attractiveness of 0S  for 0S  is to ensure (11), 
which implies that (12) is reaching time, controllers is 
given as 

 2

2
2 2 4 34

1
4 1 3 3 4

2

( ) ( )

p q

q p qpw d

p
u x x x x

q

p
x x Sgn x x

q
x



  






   

  
(38) 

Thus, the missile acceleration component in LOS 
coordinate is given as 

 2

2

1

2

( ) ( )

p q
Mq

q p qpw d

p
A Rq q R

q

p
q R Sgn q q

q
q



  






   

  

  

 
      (39) 

This missile acceleration in LOS coordinate or its 
continuous approximation globally stabilizes the 

( , ) ( ,0)dq q q  in finite time without singularity in 

guidance command. 

Numerical Simulation 

Numerical simulations are performed to investigate the 
performance of the proposed guidance law. In this 
section, we consider asituation in which the initial 
relative distance is 5 km, the initial closing velocity is 
300 m/s ( [250,0] , [50,0]m t

m mV Vs s  ), and the 

initial values of LOS angle and LOS rate are zero.  
The proposed nonsingular TSMG is compared 

with conventional SM guidance which is designed 
byintroducing conventional sliding variable and TSM 
guidance with (19) as sliding variable and (27) as 
control input. The lateral acceleration using terminal 
SMC is designed as follows [26]: 

 2

12

( ) ( )

p q
Mq

p q
w d

p
A Rq R q q

q

R Sgn q q q



  

   

  

  



            (40) 

In all guidance laws, for implementation reasons 
and for removing chattering, the ( )Sgn S  function is 

replaced with ( )Tanh S  function. The value of 

parameter   in this function isadjusting the boundary 

layer width. 
These guidance laws are compared in 3 different 

scenarios. In the first scenario, the desired LOS angle (

d ) is 30 degrees and target has no maneuver.In the 

second scenario, the desired LOS angle ( d ) is 30 

degrees and target has 10 m/s2 acceleration. In the 
third, the desired LOS angle ( d ) is -10 degrees and 

target has no maneuver that leads to singularity. The 
other parameter values are listed in Table 1. 

Table 1. The value of parameters in all three scenarios 

Guidance Law       p
q  

SMG 0.4 0.02 500 - 
TSMG 0.1 0.015 130 2/5 

NTSMG 20 0.01 200 5/3 

Scenario I 

In this scenario, the performance of guidance laws for 
intercepting non-maneuvering targets with desired 
angle is checked. Therefore, desired LOS angle ( d ) 

is 30 degrees and target acceleration is zero. In this 
case,Fig. 2 shows that the peak of commanded 
acceleration (control signal) using proposed 
nonsingular TSMG is lower than other guidance laws. 
Also, in all three guidance laws, sliding variables reach 
zero in desired time that is achieved from equation (12).  
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LOS angle and its angular rate are plotted in 
figures 3-(a) and 3-(b). As seen in figures, the LOS 
angle ( 3x ) reaches desired value ( 30 degd  ) 

before interception target. Also, LOS rate reaches zero 
using all three guidance laws. Note that, these 
variables using conventional SMG are exponential 
stable in sliding phase, but using TSM and proposed 
nonsingular TSM guidance laws, these variables are 
finite time stable in both reaching and sliding phases. 
Figure 4-(a) shows the linear sliding surface in 
conventional SMG and nonlinear sliding surfaces in 
two other guidance laws that guarantee finite time 
stability in sliding phase.  

From Fig. 4-(b), it is clear that the missile 
interceptstarget with desired angle. As shown in this 
figure, first the altitude of missile is increased and 
LOS angle reaches desired value. Then, missile 
continueswith this angle and interceptsthe target. It 
is clear from Fig. 5 and Table 2, that the velocity 
losses, interception time, control effort and the 
magnitude of commanded acceleration in the 
proposed guidance law are shorter than two other 
guidance laws.   

 

 
(a) 

 

 
(b) 

Fig. 2. (a) Commanded Acceleration (b) Sliding Variable 

 
(a)  

 
(b) 

Fig. 3. (a) Line of Sight angle (b) Line of Sight rate 

 
(a) 

 
(b) 

Fig. 4. (a) Phase Plane (b) Interception Plan  
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(a)  

 
(b) 

Fig. 5. (a) Closing Velocity (b) Relative Range 

 

Table 2. The Information for Scenario I 

Guidance 
Law 

Interception 
Time (s) 

Energy 
(m2/s3) 

Peak of 
Acceleration 

(m/s2) 

SMG 22 34550 155 

TSMG 19.5 14500 75 

NTSMG 18.75 9400 70 

Scenario II 
In this scenario, the performance of guidance laws 
for intercepting the maneuvering targets with desired 
angle is checked. Therefore, target acceleration is 10 
m/s2. In this case,Fig. 6 shows that the peak of 
commanded acceleration using proposed NTSMG is 
lower than other laws and sliding variables reachzero 
in desired time. As seen in Fig. 7, the LOS angle 
reaches desired value before interception into target 
and LOS rate reaches zero. As shown in Fig. 8, LOS 
angle reaches desired value and then, missile 
continues with this angle and interceptsthe target. It 
is clear from Fig. 9 and Table 3, that the velocity 
losses, interception time, control effort and the 
magnitude of commanded acceleration in proposed 
guidance law areshorter than other guidance laws.   

 
(a) 

 
(b) 

Fig. 6. (a) Commanded Acceleration (b) Sliding Variable 

 
(a) 

 
(b) 

Fig. 7. (a) Line of Sight angle (b) Line of Sight rate 
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(a) 

 
   (b) 

Fig. 8. (a) Phase Plane (b) Interception Plan  

 
(a)  

 

 
(b) 

Fig. 9. (a) Closing Velocity (b) Relative Range 

Table 3. The Information for Scenario II 

Guidance 
Law 

Interception 
Time(s) 

Energy 
(m2/s3) 

Peak of 
Acceleration (m/s2) 

SMG 22.2 37000 170 

TSMG 20.5 23500 125 

NTSMG 19.25 12200 94 

Scenario II 

In this scenario, the performance of guidance laws is 
checked when singularity occurrs. Therefore, desired 
LOS angle ( d ) is -10 degrees and target acceleration 

is zero. In this case, Fig.s 10 and 11 show that the 
singularity occurrs in TSMG law when LOS angle 
reaches desired angle and LOS rate has non-zero 
value. This acceleration command is not 
implementable and leads to singularity in LOS rate, 
too. It is clear from Fig. 13 and Table 4, that this 
singularity leads to an increase in the velocity losses, 
interception time, and control effort.   

 

(a)  

 

(b) 

Fig. 10. (a) Commanded Acceleration (b) Sliding Variable 
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(a)  

 
(b) 

Fig. 11. (a) Line of Sight angle (b) Line of Sight rate 

 
(a) 

 
(b) 

Fig. 12. (a) Phase Plane (b) Interception Plan  

 
(a)  

 
(b) 

Fig. 13. (a) Closing Velocity (b) Relative Range 

Table 4. The Information for Scenario III 

Guidance 
Law 

Interception 
Time(s) 

Energy 
(m2/s3) 

Peak of 
Acceleration (m/s2) 

SMG 17.8 27200 155 
TSMG 19.23 5314000 500000 

NTSMG 17.4 8250 78 

Conclusion 

The new guidance law which isproposed here can adjust 
LOS angle to the predefined LOS angle. The structure 
of the proposed guidance law is developed based on 
NTSM control theory. This method guarantees the 
convergence of LOS angle and rate without singularity 
in commanded acceleration as control signal. The 
proposed guidance law has simple structure and is 
robust in the pretense of uncertainties such as target 
maneuver. Simulation results show the effectiveness 
and robustness of the proposed guidance law in 
comparison with the conventional and terminal SMG. 

References 

[1]  Zarchan, P., Tactical and Strategic Missile Guidance, 
AIAA Series, Vol. 199, 2002, pp. 143–152. 

[2]  Siouris, G. M., Missile Guidance and Control Systems, 
Springer, 2005, pp. 194–228. 

0 5 10 15 20
0

5

10

15

Time (s)

LO
S

 A
ng

le
 (

D
eg

)

 

 
SMG
Terminal SMG

Nonsingular Terminal SMG

0 5 10 15 20
-2

0

2

4

6

8

Time (s)

LO
S

 R
at

e 
(D

eg
/s

)

 

 
SMG
Terminal SMG

Nonsingular Terminal SMG

-10 -8 -6 -4 -2 0 2
-1

0

1

2

3

4

5

LOS Angle Error

LO
S

 R
at

e

 

 Conventional Sliding Variable

Terminal Sliding Variable

Nonsingular Terminal Sliding Variable

 Conventional Sliding Surface

 Terminal Sliding Surface
Nonsingular Terminal Sliding Surface

0
2000

4000
6000

-1

0

1
-600

-400

-200

0

 

X(m)Y(m)
 

Z
(m

)

SMG

Terminal SMG
Nonsingular Terminal SMG

Target Trajectory

0 5 10 15 20
250

260

270

280

290

300

310

Time (s)

C
lo

si
ng

 V
el

oc
ity

 (m
/s

)

 

 
SMG

Terminal SMG

Nonsingular Terminal SMG

0 5 10 15 20
0

1000

2000

3000

4000

5000

Time (s)

R
el

at
iv

e 
R

an
ge

 (
m

)

 

 
SMG
Terminal SMG

Nonsingular Terminal SMG



Journal of Space Science and Technology 
Vol. 11/ No. 2/ 2018 10 / 

 
  
 

V. Behnamgol, A.R. Vali and A. Mohammadi
 

[3]  Behnamgol, V., Vali, A.R. and Mohammadi, A., “A 
New Backstepping Sliding Mode Guidance Law 
Considering Control Loop Dynamics,” Journal of 
Space Science and Technology (JSST), Vol. 8,  No. 4, 
Winter 2016, pp. 9-16. 

[4]  Behnamgol, V., Vali, A. R. and Mohammadi, A., “A 
New Observer-Based Chattering-Free Sliding Mode 
Guidance Law,” ProcIMechE Part G, J. Aerospace 
Engineering , Vol. 230, No.8, 2016, pp. 1486–1495. 

[5]  Zhou, D., Sun, Sh., Zhou, J.Y., Teo, K.L. “A Discrete 
Sliding-Mode Guidance Law,” Transactions of the ASME, 
Journal of Dynamic Systems, Measurement, and Control, 
Vol. 137, 2015, pp. 6  

[6]  Liu, L., Zhu, J., Tang, G. and Bao, W. “Diving guidance 
via feedback linearization and sliding mode control,” 
Aerospace Science and Technology, Vol. 41, 2015,  pp. 
16–23. 

[7]  Modirrousta, A., Sohrab, M. and Dehghan, S.M.  “A 
modified guidance law for ground moving target tracking 
with a class of the fast adaptive second-order sliding 
mode,” SAGE Transactions of the Institute of 
Measurement and Control, 2015, pp.1–13. 

[8]  Shtessel, Y. B., Shkolnikov, I. A., and Levant, A., 
“Smooth second-order sliding modes: Missile guidance 
application,” Automatica, No. 43, 2007, pp. 1470 – 1476. 

[9]  Behnamgol, V., Mohammadzaman, I., Vali, A.R., 
Ghahramani. N.A., “Guidance Law Design using Finite 
Time Second Order Sliding Mode Control,” Journal of 
Control, K.N. Toosi University of  Technology, Vol. 5,  
No. 3, 2011, pp. 36-45.  

[10]  Harl, N. and Balakrishnan, S. N., “Impact Time and Angle 
Guidance with Sliding Mode Control,” IEEE Transaction 
on Control Systems Technology, 2011.  

[11]  Ryoo, C., Cho, H., and Tahk, M., “Closed-Form solutions 
of optimal guidance with terminal impact angle 
constraint,” in Proc. IEEE Conf. Control Appl., 2003, pp. 
504–509. 

[12]  Jeong, S., Cho, S., and Kim, E., “Angle constraint biased 
PNG,” in Proc. 5th Asian Control Conf., 2004, pp. 1849–
1854. 

[13]  Lu, P., Doman, D., and Schierman, J., “Adaptive terminal 
guidance for hypervelocity impact in specified direction,” 
presented at the AIAA Guidance. Navigation. Control 
Conf. Exhibit, San Francisco, CA, 2005. 

[14]  Xu, Q., Yu, J., Yu, J., and Yang, X., “Integrated 
guidance/autopilot design for missiles with impact 
angle constraints,” in Proc. IEEE Int. Conf. Inform. 
Acquisition, 2006, pp. 75–79. 

[15]  Ryoo, C., Cho, H., and Tahk, M., “Time-to-Go weighted 
optimal guidance with impact angle constraints,” IEEE 
Trans. Control Syst. Technology., Vol. 14, No. 3, May 
2006, pp. 483–492. 

[16]  Sang, D., Min, B., and Tahk, M., “Impact angle control 
guidance law using Lyapunov function and PSO 
method,” in Proc. Annu. SICE Conf., 2007, pp. 2253–
2257. 

[17]  Ratnoo, A., and Ghose, D., “SDRE based guidance law 
for impact angle constrained trajectories,” presented at the 
AIAA Guid., Nav., Control Conf. Exhibit, Hilton Head, 
2007. 

[18]  Rao, S., and Ghose, D., “Sliding Mode Control based 
Terminal Impact Angle Constrained Guidance Laws using 
Dual Sliding Surface”, 12th IEEE Workshop on Variable 
Structure Systems, January 12-14, Mumbai, 2012. 

[19]  Gu, W., Zhang, U., YU, J.,“A three-dimensional Missile 
Guidance Law with Angle Constraint Based on Sliding 
Mode Control”, 2007 IEEE International Conference on 
Control and Automation, Guangzhou, CHINA - May 30 
to June 1, 2007. 

[20]  Komurcugil, H., “Adaptive terminal sliding-mode control 
strategy for DC–DC buck converters”, Elsevier ISA 
Transactions 51, 2012, pp. 673–681. 

[21]  Chiu, Ch. S., “Derivative and integral terminal sliding 
mode control for a class of MIMO nonlinear systems”, 
Elsevier Automatica, 48, 2012, pp. 316–326. 

[22]  Zhou, D., and Sun, S., “Guidance Laws with Finite Time 
Convergence,” Journal of Guidance, Control, and 
Dynamics, 32, pp. 1838-1846, 2009. 

[23]  Janardhanan, S., and Bandyopadhyay, B., "On 
Discretization of Continuous-TimeTerminal Sliding 
Mode", IEEE TRANSACTIONS ON AUTOMATIC 
CONTROL, VOL. 51, NO. 9, SEPTEMBER 2006, pp. 
1532- 1536. 

[24]  Kumar, Sh. R., Rao, S., and Ghose, D., “Sliding Mode 
Guidance and Control for All Aspect interceptors with 
Terminal Angle Constraints”, Journal of Guidance, 
Control, and Dynamics, Vol. 35, No. 4, july – August 
2012. 

[25]  Zhang, U., Sun, M., Chen, Z., “Finite-time convergent 
guidance law with impact angle constraint based on 
sliding-mode control”, Springer, Nonlinear Dynamics, 
Published online 07 June 2012. 

[26]  Behnamgol, V., Vali, A. R., Mohammadi, A., "Designing 
Guidance Law For Intercepting With Limited Angle 
Using Terminal Sliding Mode Control," 13th Conference 
of Iranian Aerospace Society, Tehran, IRAN, 23-25 
February 2014. 

[27]  Feng, Y., Yub, X., Han, F., “On nonsingular terminal 
sliding-mode control of nonlinear systems”, Elsevier 
Automatica 49, 2013, pp. 1715–1722. 

[28]  Li, K., Cao, J., and Yu, F., “Study on the Nonsingular 
Problem of Fractional-Order Terminal Sliding Mode 
Control”, Hindawi Publishing Corporation, Mathematical 
Problems in Engineering, 2013. 

[29]  Kumar, Sh. R., Rao, S., and Ghose, D., “Non-singular 
Terminal Sliding Mode Guidance and Control with 
Terminal Angle Constraints for Non-maneuvering 
Targets”, 12th IEEE Workshop on Variable Structure 
Systems, January 12-14, Mumbai, 2012. 

[30]  Khalil, H. K., Nonlinear Systems, Prentice-Hall, Upper 
Saddle River, NJ, 1996, pp. 601-617.  

[31]  Slotine, J. J. E., and Li, W., Applied Nonlinear Control, 
Prentice-Hall, Upper Saddle River, NJ, 1991, pp. 276-309.  

[32]  Fridman, L., Moreno, J., and Iriarte, R., Sliding Modes 
after the First Decade of the 21st Century, Springer, 2011. 

[33]  Feng, Y., Yu, X., Man, Zh., “Non-singular terminal 
sliding mode control of rigid manipulators”, Elsevier, 
Automatica 38, 2002, pp. 2159 – 2167. 

[34]  Sun, Sh., Zhou, D., Hou, W., “A guidance law with 
finite time convergence accounting for autopilot lag”, 
Elsevier, Aerospace Science and Technology 25, 2013, 
pp. 132–137. 


