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This paper considers the problem of asymptotic stabilizing of velocity and body rates
of a spacecraft in the presence of uncertainties and external disturbances. One of the
important methods in controller design for nonlinear systems; is designing based on the
passivity concept. This concept which provides a useful tool for analysis of nonlinear
systems has been also used for asymptotic stabilizing of nonlinear dynamical systems
especially mechanical systems. The passivity-based control law is a static output feedback
and has valuable features. Because of existence of uncertainties and external
disturbances in the state-space of equations of physical systems; first the robust version of
passivity-based control method, which is recently developed in literature, is given and the
control law for nonlinear uncertain systems with affine structure is presented. Then, this
approach is used in controller design for a spacecraft. Snce, this paper considers only
the stabilization of velocity and body rates, therefore the reduced-order model is
extracted from the state-space equation of a spacecraft with six degree of freedom and
then the robust control law is designed. Computer simulations show the efficiency of the
proposed controller in robust asymptotic stabilizing of the velocity and body rate vectors
of the spacecraft in the presence of uncertainties and external disturbances.

Keyword: Passivity-based control, Robust stabilization, Spacecraft

Nomenclature

states vector of the system
input vector of the system
output vector of the system
position of the spacecraft
velocity of the spacecraft
quaternion of the spacecraft
body rate of the spacecraft
mass of the spacecraft

the distances from the center of mass of
the points where the forces are applied
force vector

torgue vector
moments of inertia
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I ntroduction

Controller design for spacecraft is an important
problem which has been studied in literatures. For
instance in [1], a controller is designed based on the
sliding mode method. Authors of [2]; proposed a
controller based on state dependent Riccati eguation.
Controller design for spacecraft stabilization based on
backstepping adaptive sliding mode was givenin [3].
Practically; in the state space equations of a
spacecraft system, like other dynamical systems;
may be uncertainty due to, external disturbances,
parameter uncertainties or unknown nonlinear
function which may be caused by inaccurate
modeling or model reduction. Therefore, the
proposed controllers should have a robust manner in
the presence of uncertainties.

In [4]; a robust tracking control under input
saturation was designed. Also, finite-time controllerfor
robust stabilization of spacecraft were presented in
[5,6].
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Among the nonlinear control method; passivity-based
control is an important category [7-11]. Passivity-
based control has application in many engineering
problems like electromagnetic systems, process
control, motor control, power electronics, mechanical
systems [11-15].

There is a valuable feature for passive systems which
can be stabilized utilizing a static output feedback.

If a nonlinear passive system be zero-state observable
then will be asymptotically stabilized by a static

output feedback like u = —¢@(y ) (where ¢(0) =0and

yT¢(y)>0,foral y #0).

In this regard, the Kalman-Y akubovich-Popov (KY P)
lemmais an important tool .The robust version of this
lemma is aso proposed [16]. According to it, the
robust version of passivity-based control is recently
presented [16-20].

The goal of this paper is designing a controller for
robust stabilizing the velocity and body rate vectors of
a spacecraft in the presence of uncertainties and
external disturbances. To achieve this purpose, the
robust passivity-based control method is used.
Computer simulations show the efficiency of the
proposed controller in robust asymptotic stabilizing of
the velocity and body rate vectors of the spacecraft.

Robust Passivity-Based (RPB) Control
Method

In this section, the robust control law is proposed for
nonlinear affine systems in the presence of
uncertainties and externa disturbances, based on RPB
control method. The effect of these unknown terms
can be removed by a RPB controller which also
asymptoticaly stahilizes the nonlinear system.
Consider the following uncertain nonlinear system:

{x‘ =f (X)+G(X)u+D(X)+A(x))
y =h(x)
wherex € R" represents the state vector, ue R™

is the input vector and y e R™ is the output vector.
Also, f (x) and G(x)are Locally Lipschitz functions

)

and h(X) is a continuous vector function (where
f (0)=h(0)=0).D(x)is the externa disturbance
and A(X) isthe unknown uncertainties.

First, suppose D (x)=A(x) =0, therefore the nominal
systemisasfollows:

{x’ =f (x)+G(x)u
y =h(x)

System (2) is passive, if there exist a positive semi-
definite function S:x — R (which S(0) =0) such
that [9]:

@
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S<y'u @3)

KYP Lemma 1 [9]: Consider system (2). Suppose
that exist a positive semi-definite function
S:x > R, with S(0)=0 for system (2), such
that:

IS¢ x)<0

ox

95 & ()T )
B600)=h" (x)

then the system (2) is passive.

Definition 1 [9]: Consider system (2), if for y =0
andu =0, there is not any solution forX =f (x,0),
except X (t)=0then system (2) is zero-state
observable.

Theorem 1:Suppose that system (2) is passive with a
radially unbounded positive definite storage function
S(x) and it is zero-state observable, then its
equilibrium point X =0, can be globaly
asymptotically stabilized by the following control law:
u=-¢(y) ©)
whereg(.) is a function (¢(0) =0) that is Locally

Lipschitz,andforal y #0, y'¢(y)>0.
Proof: [9].

Now consider the system (1) and suppose D (x) and
A(X) are non-zero. The following theorem which is

based on the robust version of KY P lemma, gives the
sufficient conditions for designing a control law.

Theorem 2: Consider the zero-state observable
nonlinear system (1), and suppose there exists a
positive definite storage function S(X) such that:

0S

yf (x)<0 (6)
26 ()=h" () o
and

[D e[ < Ay’ (x), 4>0 ®
[A0]< 22y 02" (). 2, >0 ©

where A4, A,are known positive constants and

@,(X), ¢,(x)are known functions. Then the

following robust control law asymptotically stabilizes
the nonlinear system (1) in the presence of
uncertainties and external disturbances.

U=—ky (Y@ (x) +y@,°(x)) = 4(y) (10)
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wherek, is a postive constant which is
k, >max{ 4,4}, and ¢(y) satisfies the inequality

y  ¢(y) > Ofor all y #0.
Proof: [17].

Application of RPB Method for Spacecr aft
Stabilization

In this section the proposed method (RPB) is used for
robust stabilizing of the velocity and body rate vectors
of a spacecraft.

The equations of a spacecraft with six degrees of
freedom are asfollows[2]:

r —Or +V 033 033
Y -V 1/ m)l 0 F
|- A Mlag Oz (1)
q| |@/2)Q(w)q O3 Ogea || T
@ N J's 37t
where r e R®, veR?, qe R* and we R%ae

position, velocity of the spacecraft, quaternion and body
rates of the spacecraft, respectively. The mass of the
spacecraft is m. The distances from the center of mass

of the points where the forces are applied are p e RS,
and p represents the elements of the skew symmetric
matrix 0. Also, F e R3includes the dements of
control force vector and T € R* is a vector of control
torque of the spacecraft. The moments of inertia are
J € R*® Furthermore, of @ and Q(w) are; where
reR® veR? ge R* and we R®ae position,

velocity of the spacecraft, quaternion and body rates of
the spacecraft, respectively. The mass of the spacecraft
is m. The distances from the center of mass of the

points where the forces are applied are pe RS, and
0 represents the elements of the skew symmetric

matrix 0. Also, F e R3includes the elements of

control force vector and T € R? is a vector of control
torque of the spacecraft. The moments of inertia are

J € R*3Furthermore, of @ and Q(w) are:

0 -o -0, -o
-0, o

0
- ’ ’ o, 0 w -o
0=\ w, 0 -o |,Qw)=
w, -0, 0 @
-0, 0
o, 0 - 0

Here, the purpose is to asymptotically stahilize the
velocity and body rates of the spacecraft. Since, in
dynamical equations of V and w(refer to equations
(12)), the state variablesr and Q,have not been

appeared; thus in order to stabilize v and wthe
following reduced-order equations may be considered.
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{\/} [ -V } [(1/m)l3x3 OMHF}
= 1 ~ + -1 (12)
@ -J o Jw Oy5 J T

Considering the state-space equations(12) in the
structure of equation (2), then:

LY -V @/ m)las Oga
X= |, f= 1~ , G = ERR
w J T wlw 0&3 J

u- m (13)

Also, assume that the DV,w) and Al ,w) terms

which may cause by inaccurate modeling or model
reduction, are exist.

P} [ -V } {(l/m)lw o%}
= -1 ~ + -1
w -J wlw 0,4 J (14)

x([:}+D(v,a))+A(v,a))j

If SV, w)=@/2V"V +(1/2)0" @ be assumed as
a candidate of the storage function for the system (14),
then:

‘;—Sf (xX)=@/2N"v + (@11 2v'V
X

+(1/2)d o+ 11 2w" & (15)
=-(W2)d [@7@I) +@ D) |o

with numerical analysis, it can be shown that the
equation (15) is negative definite therefore the
condition (6) is satisfied.

Now, according to condition (7), by substituting G
from (13), then:

oS 0S 9S || @/ m)l 0
y' = a_xG (x)= {a—v m}{ 0 e Jaj} (16)
33

therefore, if the output of (14) is defined as follow, the
condition (7) will be also satisfied.

)
Suppose that D(x) and A(Xx) satisfying the
condition (8) and (9). Now, the task is to design the
control vector U =[F T ]T , according to the
Theorem 2, for robust asymptotically stabilizing of the
State vector X =V a)]T in the presence of the non-
zeroterms D (x) and A(X) .

Computer Simulations

In this section the proposed controller is utilized for
the system (14) and the time-response of the elements
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of satevedors(ie v, ad @ :for i =1, 2,3) anddsothe
control inputs(i.e. F, and T, :i =1, 2, 3) arepresanted.

In computer simulations the following vectors
and parameters are used.

3000 -300 -500
J =|-300 3000 -400|kgn?
-500 -400 3000
m = 3000kg
[-03 -02 -01 +02 -01 -02][v, ]
-02 -01 -02 -02 -03 -02||V,
DY.0) = +02 -01 -02 +01 +03 -01|/Vj
+03 -05 -03 +04 -03 +02| @
+01 -02 -01 +02 +01 +0.1| @,
[+02 -01 -02 -05 +03 +0.1]| ;|
[-02 -02 -03 +02 -01 -02][v ]
-04 -01 +03 +02 -03 -02||V,
02 -01 -02 +01 +03 -01||V
AV, @) = + + + 3
02 -05 -03 -06 -03 -02|
402 -04 -01 +02 -02 +01| w,
[+01 -01 -02 +05 -01 -01| aj]
From equation (17):
1/ m)v 1/ m)l 0
y{(_”) H( a0 "‘iﬂ}x (18)
(U)o 0., 3
Since
Wm0y |,
03(3 (J —1)T
Therefore,
[yl=Ix] (19
|D||<0.9332|| x| (20)
|A]<0.9856| x| (21)

Now, by choosing 4, = 2, =5and ¢ (x)=¢,(x) =1

therefore, conditions (8) and (9) are satisfied.
Finally from (10), the feedback control law can be
design asfollows:

u=-Kky(y +y)-o(y)

where k; =2000, and ¢(y) =2y ischosen.

Figures 1 and 2 show the robust asymptotically
gabilization of the velocity and body rate vectors,

respectively.

(22)

Also, Figures 3 and 4 represent the time history of
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control force and control torque vectors, respectively.
According to the simulation results, it is obvious that
the proposed method guarantees the robust
asymptotically stabilization of the velocity and body
rates of the spacecraft.
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The initial conditions of the velocity and body
rates are considered as follows:

v(0)=[-02 03 -05]"

®(0)=[-075 02 04]

Also, Figures 5-8 represent the time history of the
velocity and body rates, control force and control
torque for the following initial conditions:

v(0)=[10 -10 5], ®(0)=[1 05 -2]"
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Fig. 5. Trajectory of state variables
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Fig. 7. Control forces of spacecraft
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Fig. 8. Control torques of spacecraft

Conclusion

In this paper first the nonlinear passive systems was
introduced and a robust stabilization control law was
given based on the robust version of the KYP lemma.
Then a robust passivity-based controller was designed
for robust asymptoticaly stabilizing of the velocity
and body rates of a spacecraft with six degrees of
freedom. The computer simulations showed the
efficiency of the proposed controller in terms of good
characteristics of transient responses of the state
variables and control inputs and aso the robust
asymptotic stabilizing of state variables.
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