Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, IRAN

2 Ph.D. Student, Aerospace. Eng., Tehran Univ.,Pardis Kish,kish. IRAN

3 Department of Mechanical Engineering Mechanical, NIT university, ,Babol, IRAN

4 Science and Technology Park, Tarbiat Modares University, Tehran, IRAN

Abstract

In this research, it is attempted to determine the diameter and velocity distribution according to the flow characteristics of the upstream and without needing experimental measurements.
Firstly, Fluent software has been used to simulate the turbulent flow of inside nozzle by k-? model to obtain the nozzle turbulence energy at the nozzle outlet. Then, nonlinear growth rate analysis of instability is used to determine spray breakup length and the frequency of maximum instability and the mean diameter of primary breakup. Four equation maximum entropy model has been developed according to the inlet of upstream flow. Subsequently, the terms of momentum source as well as the energy of maximum entropy model has been determined using the results of simulated nozzle turbulence flow and instability analysis. In the following, first the results of maximum entropy model have been evaluated with the experimental input and then determined with upstream input. The obtained results which have been compared with experimental tests show well agreement.

Keywords

1.   Dumouchel, C., "The maximum entropy formalism and the prediction of liquid spray drop-size distribution" Entropy, Vol. 11, No. 4, 2009, pp. 713-747.
2.   Bodaghkhani, A., Colbourne, B. and Muzychka, Y.S., "Prediction of droplet size and velocity distribution for spray formation due to wave-body interactions," Ocean Engineering,. Vol. 155, 2018, pp. 106-114.
3.   Asadollahzadeh, M. and et al., "Using maximum entropy, Gamma, Inverse Gaussian and Weibull approach for prediction of drop size distribution in a liquid–liquid extraction column," Chemical Engineering Research and Design, Vol. 117,2017, pp. 637-647.
4.   Movahednejad, E., Ommi, F. and Hosseinalipour, S.M., "Prediction of droplet size and velocity distribution in droplet formation region of liquid spray," Entropy, Vol. 12, No. 6, 2010, pp. 1484-1498.
5.   Hosseinalipour, S.M., Karimaei, H. and Movahednejad, E., "Droplets diameter distribution using maximum entropy formulation combined with a new energy-based sub-model," Chinese journal of chemical engineering, Vol. 24, No. 11, 2016, pp. 1625-1630.
6.   Tayeb, R. and et al., "Both experimental and numerical investigation on breakup length of cylindrical falling jet," Procedia Engineering, Vol. 56, 2013, pp. 462-467.
7.   Omocea, I.L. and et al., "Breakup of Liquid Jets," Energy Procedia, Vol. 85, 2016, pp. 383-389.
8.   Yao, S., Zhang, J. and Fang, T., "Effect of viscosities on structure and instability of sprays from a swirl atomizer," Experimental Thermal and Fluid Science, Vol. 39, 2012, pp. 158-166.
9.   Ibrahim, A. and Jog, M., "Nonlinear instability of an annular liquid sheet exposed to gas flow," International Journal of Multiphase Flow, Vol. 34, No. 7, 2008, pp. 647-664.
10. Zhao, H. and et al., "Transition Weber number between surfactant-laden drop bag breakup and shear breakup of secondary atomization," Fuel, Vol. 221, 2018, pp. 138-143.