[1] G. Ridolfi, E. Mooij, D. Dirkx, S. Corpino, Robust multi-disciplinary optimization ofunmanned entry capsules, AIAA Modeling and Simulation Technologies Conference, 2012.
[2] K. Sudmeijer, E. Mooij, Shape Optimization for a Small Experimental Re-entry Module, AIAA/AAAF 11th International Space Planes and Hypersonic Systems and Technologies Conference, 2002.
[3] J. Sun, G. Zhang, N. Vlahopoulos, S. B. Hong, Multi-disciplinary design optimization under uncertainty for thermal protection system applications, 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2006.
[4] S. Akhtar, H. Linshu, An efficient evolutionary multi-objective approach for robust design of multi-stage space launch vehicle, 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p. 7073, 2006.
[5] G. Zhang, J. He, N. Vlahopoulos, Multidisciplinary design under uncertainty for a hypersonic vehicle, 13th AIAA/ISSMO multidisciplinary analysis optimization conference, 2010.
[6] J. Jodei, M. Ebrahimi, J. Roshanian, Multidisciplinary design optimization of a small solid propellant launch vehicle using system sensitivity analysis,Structural and Multidisciplinary Optimization, Vol. 38, No. 1, pp. 93-100, 2009.
[7] M. Ebrahimi, M. R. Farmani, J. Roshanian, Multidisciplinary design of a small satellite launch vehicle using particle swarm optimization,Structural and Multidisciplinary Optimization, Vol. 44, No. 6, pp. 773-784, 2011.
[8] K. M. Ryan, M. J. Lewis, K. H. Yu, Comparison of robust optimization methods applied to hypersonic vehicle design, Journal of Aircraft, Vol. 52, No. 5, pp. 1510-1523, 2015.
[9] B. Luo, J. Zheng, Efficient MOEAs with an adaptive sampling technique in searching robust optimal solutions, In Intelligent Control and Automation, 7th World Congress on, IEEE, pp. 117-123, 2008.
[10] T. A. Zang, M. J. Hemsch, M. W. Hilburger, S. P. Kenny, J. M. Luckring, P. Maghami, S. L. Padula, W. J. Stroud, Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles, Technical Report TM-2002-211462, NASA, 2002.
[11] Z. Tang, J. Périaux, Uncertainty based robust optimization method for drag minimization problems in aerodynamics, Computer Methods in Applied Mechanics and Engineering, Vol. 217, pp. 12-24, 2012.
[12] L. G. Crespo, D. M. Bushnell, Optimization of Systems with Uncertainty: Initial Developments for Performance, Robustness and Reliability Based Designs, 2002.
[13] J. Roshanian, M. Ebrahimi and E.Bataleblu, " Survey on Nondeterministic Optimal Design and Its Applications in the Aerospace Industry," Journal of Space Science and Technology, Vol. 4, No. 3 & 4, Fall 2011 and Winter 2012.
[14] S. Padula, W. Li, Options for robust airfoil optimization under uncertainty, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, p. 5602, 2002.
[15] Y. Jin, J. Branke, Evolutionary optimization in uncertain environments-a survey, IEEE Transactions on evolutionary computation, Vol. 9, No. 3, pp. 303-317, 2005.
[16] J. M. Zentner, A design space exploration process for large scale, multi-objective computer simulations, PhD Thesis, Georgia Institute of Technology, 2006.
[17] R. Hassan, W. Crossley, Spacecraft reliability-based design optimization under uncertainty including discrete variables, Journal of Spacecraft and Rockets, Vol. 45, No. 2, pp. 394-405, 2008.
[18] M. D. McKay, R. J. Beckman, W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, Vol. 42, No. 1, pp. 55-61, 2000.
[19] J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numerische Mathematik, Vol. 2, No. 1, pp. 84-90, 1960.
[20] L. Kocis, W. J. Whiten, Computational investigations of low-discrepancy sequences, ACM Transactions on Mathematical Software (TOMS), Vol. 23, No. 2, pp. 266-294, 1997.
[21] R. E. Melchers, Simulation in time-invariant and time-variant reliability problems, Reliability and Optimization of Structural Systems’ 91, pp. 39-82, Springer, 1992.
[22] Y-T. Wu, Computational methods for efficient structural reliability and reliability sensitivity analysis, AIAA journal, Vol. 32, No. 8, pp. 1717-1723, 1994.
[23] D. Dirkx, E. Mooij, Continuous aerodynamic modelling of entry shapes, AIAA Atmospheric Flight Mechanics Conference, 2011.
[24] E. Theisinger, R. D. Braun, Multi-objective hypersonic entry aeroshell shape optimization, Journal of Spacecraft and Rockets, Vol. 46, No. 5, pp. 957-966, 2009.
[25] J. E. Theisinger, R. D. Braun, Hypersonic entry aeroshell shape optimization, MS Special Problems Report,Vol. 12,Georgia Institute of Technology, 2007.
[26] A. R. Ghaedamini Harouni, S. H. Hashemi Mehne, Multi-Disciplinary Multi-Objective Shape Optimization of Orion Type Re-entry Capsule, Modares Mechanical Engineering, Vol. 19, No. 3, pp. 665-675, 2019.
[27] D. Dirkx, E. Mooij, Optimization of entry-vehicle shapes during conceptual design,Acta Astronautica, Vol. 94, No. 1, pp. 198-214, 2014.
[28] C. B. Craidon, A description of the Langley wireframe geometry standard (LaWGS) format, Technical Report TM 85767, NASA, 1985.
[29] J. Theisinger, R. Braun, I. Clark, Aerothermodynamic Shape Optimization of Hypersonic Entry Aeroshells, 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, 2010.
[30] A. E. Gentry, D. N. Smyth, W. R. Oliver, The Mark IV Supersonic-Hypersonic Arbitrary-Body Program. Volume II- Program Formulation, AFFDL-TR-73-159, USAF Flight Dynamics Laboratory, 1973.
[31] J. A. Fay, Theory of stagnation point heat transfer in dissociated air, Journal of the Aeronautical Sciences, Vol. 25, No. 2, pp. 73-85, 1958.
[32] H. Ashley, Engineering analysis of flight vehicles, Courier Corporation, 1992.
[33] W. L. Hankey, Re-entry aerodynamics, American Institute of Aeronautics and Astronautics, 1988.
[34] F. J. Regan, S. M. Anandakrishnan, Dynamics of atmospheric re-entry, American Institute of Aeronautics and Astronautics, 1993.
[35] U. S. ATMOSPHERE, NOAA-S/T76-1562, US Government Printing Office, Washington, DC, 1976.
[36] M. Nosratollahi, M. Mortazavi, A. Adami, M. Hosseini, Multidisciplinary design optimization of a reentry vehicle using genetic algorithm, Aircraft Engineering and Aerospace Technology, Vol. 82, No. 3, pp. 194-203, 2010.
[37] K. Deb, A. Pratap, S. Agarwal, T. A. M. T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transaction on Evolutionary Computation, Vol. 6, No. 2, pp. 182-197, 2002.
[38] A. Adami, M. Nosratollahi, M. Mortazavi, M. Hosseini, Multidisciplinary design optimization of a manned reentry mission considering trajectory and aerodynamic configuration, Proceedings of 5th International Conference on Recent Advances in Space Technologies - RAST2011, IEEE, pp. 598-603, 2011.
[39] J. J. Bertin, Hypersonic aerothermodynamics, American Institute of Aeronautics and Astronautics, 1994.
[40] J. J. Sellers, W. J. Astore, R. B. Giffen, W. J. Larson, Understanding space: an introduction to astronautics, Primis, 2000.
[41] W. Tang, M. Orlowski, J. M. Longo, P. Giese, Aerodynamic optimization of re-entry capsules, Aerospace science and technology, Vol. 5, No. 1, pp. 15-25, 2001.