تلفیق داده‌های سنجش از دوری به منظور بهینه‌سازی مدل تراکم تاج پوشش جنگلی (مطالعه موردی: جنگل‌های هیرکانی، سنجنده لندست)

نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 گروه پژوهشی سیستم‌های فضایی، پژوهشکده فضانوردی، پژوهشگاه هوافضا، تهران، ایران

2 دانشکده ژئوماتیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

3 دانشکده ژئوماتیک،دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران، ایران

10.30699/jsst.2019.86091

چکیده

هدف از این پژوهش دستیابی به مدلی کارآ، ساده و با دقت مناسب برای پایش روند تغییرات تراکمی جنگل‌های هیرکانی است. مبنای نگارگر تاج پوشش جنگل تلفیق شاخص‌های طیفی است. در این پژوهش، به منظور بهبود نتایج، از تلفیق داده‌ها استفاده می‌شود. بدین منظور، با حفظ مشخصههای طیفی و رادیومتریکی، از دو الگوریتم پاسخ طیفی و smoothing filter based intensity modulation به اختصار SFIM استفاده شد. حوزه آبخیز هراز به منظور پیاده‌سازی، و ارزیابی نتایج انتخاب گردید. نقشه مرجع به تفکیک کلاسهای تراکمی تنک، نیمه انبوه، انبوه و فاقد پوشش جنگل، مورد استفاده قرار گرفت. مدل در برآورد تاجپوشش‌های میانی تنک و نیمهانبوه ضعیف بوده و در تشخیصپوشش‌های متراکم و مناطق فاقد تاجپوشش دقت مطلوبی دارد. این نتیجه از تصاویر حاصل از هم‌افزایی باندها نیز احصاء شد. از این‌روی مدل مناسبی برای پایش جنگل‌های هیرکانی است. استفاده از تصاویر با قدرت تفکیک مکانی بالاتر منجر به افزایش دقت مکان‌یابی مدل و بالطبع دقت طبقه‌بندی خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Improvement of Forest Canopy Density Model Using Remote Sensing Data Integration

نویسندگان [English]

  • Masoud Taefi Feijani 1
  • Abbas Alimohammadi Sarab 2
  • mohammad Javad Valadan Zoej 3
1 Space System Research group, Astronautic Dep , Aerospace Research Institute, Tehran, Iran
2 Department of Geodesy and Geomatics, K. N. Toosi University of Technology, Tehran, Iran
3 Department of Geodesy and Geomatics, K. N. Toosi University of Technology, Tehran, Iran
چکیده [English]

Forest Canopy Density Mapper is a method based on spectral indexes integration in forest canopy density classification. In this paper, a data integration procedure is used to improve the result. In this respect, SFIM method and spectral response algorithm is utilized without a bad effect on the spectral and radiometric properties of bands. In the following, Landsat images of Hyrcanian forests in the north of Iran were used to implement the conventional and improved methods. Also, the ground measurements including  grass-land, thin forest, semi-dense forest and forest is utilized for evaluation. The result shows that the forest canopy density model is inefficient in the thin and semi-dense forests. Alternatively, the results in the dense forest and grass land is reliable. Additionally, the improvement of the proposed method in these two areas is clearly seen. It seems that a high resolution image should be used to improve the accuracy of the forest density classification in the semi-dense and thin forests

کلیدواژه‌ها [English]

  • Spectral response
  • Data Integration
  • Classification accuracy
  • Forest density classes
  • Forest canopy density mapper
[1] Korhonen, L. and et al., "Estimation of Forest Canopy Cover: a Comparison of Field Measurement Techniques," 2006.
[2] Wani, A.A., Joshi, P.K., and Singh, O., "Estimating Biomass and Carbon Mitigation of Temperate Coniferous Forests Using Spectral Modeling and Field Inventory Data,"Ecological informatics, Vol.25, 2015, pp. 63-70.
[3] Mette, T., K. Papathanassiou, and I. Hajnsek, "Biomass Estimation from Polarimetric SAR Interferometry Over Heterogeneous Forest Terrain". in Geoscience and Remote Sensing Symposium, Proceedings IEEE International, 2004.
[4] Simard, M., et al., "A systematic Method for 3D Mapping of Mangrove Forests Based On Shuttle Radar Topography Mission Elevation Data", ICEsat/GLAS waveforms and field data: Application to Ciénaga Grande de Santa Marta, Colombia. Remote Sensing of Environment, Vol.112, No.5, 2008, pp. 2131-2144.
[5] Managhebi, T., Maghsoudi, Y. and Valadan Zoej, MJ. "An Improved Three-Stage Inversion Algorithm in Forest Height Estimation Using Single-Baseline Polarimetric SARInterferometry Data", IEEE Geoscience and Remote Sensing Letters, Vol. 15, No. 6, 2018, pp. 887-891.
[6] Roy, P., S. Miyatake, and A. Rikimaru. "Biophysical Spectral Response Modeling Approach for Forest Density Stratification", in Proc. The 18th Asian Conference on Remote Sensing, 1997.
[7] M.Taefi Feijani,Abbas Alimohammadi, M.j Valadanzouj. “Evaluation and Optimization of FCD Model In Estimating Forest Canopy Density Classes Using Data Fusion Methods and Image Indices Substitution”, (MSc Thesis), K.N.Toosi University of ThechnologyGeomatic Engineering Faculty, 2006 (in persian).
[8] Jamalabad, M. "Forest Canopy Density Monitoring Using Satellite Images," in Geo-Imagery Bridging Continents XXth ISPRS Congress, Istanbul, Turkey, 2004.
[9] Azizi, Z., "Forest Canopy Density Estimating Using Satellite Images", The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008.
[10] Wald, L., Ranchin,T. Comment, Liu,"Smoothing Filter Based Intensity Modulation:A Spectral Preserve Image Fusion Technique for Improving Spatial Details,” International Journal of Remote Sensing, Taylor Francis, 2002, 23 (3), pp.593-597.
[11]Jian Guo Liu- “Evaluation of Landsat-7 ETM+ Panchromatic Band for Image Fusionwith Multispectral Bands,"Natural Resources Research, Vol. 9, No. 4, 2000.
[12]Farzin Naseri. “ Forest type classification and estimated of quantitative characteristics in arid and semi arid aeas using satellite data”,( PhD Thesis), Tehran University, Faculty of Natural Resources, 2003 (in persian).
[13]M.Saei Jamalabad “ Detection of Forest Canopy and area by remote sensing technology”, (MSc Thesis), K.N.Toosi University of ThechnologyGeomatic Engineering Faculty, 2003 (in persian).