طراحی مسیر بهینه حرارتی وسایل ورود به جو با استفاده از روش مدیریت پایگاه داده‌های ایرودینامیکی

نویسندگان

1 پژوهشگاه هوافضا، وزارت علوم تحقیقات و فناوری

2 پژوهشگاه هوافضا ، وزارت علوم، تحقیقات و فناوری

3 پژوهشگاه هوافضا

چکیده

در این مطالعه، روشی برای طراحی مسیر بهینه وسایل بازگشت به جو بر پایه مدیریت پایگاه داده ایرودینامیکی با استفاده از روش کریجینگ و کو-کریجینگ توسعه داده شده است.برای طراحی مسیر بازگشتی در فاز طراحی مفهومی، هر چه مدل دینامیکی وسیله بازگشتی دقیق‌تر باشد، مسیر طراحی شده به واقعیت نزدیک‌تر است. یکی از مسایل تاثیرگذار بر دقت مدل دینامیکی وسایل بازگشت به جو ، ضرایب ایرودینامیکی درپاکت پروازی وسیع آناست. بدین منظور در مطالعه حاضر با بهره‌گیری از روشی نوین، داده‌های ایرودینامیکی دقیق با استفاده از ترکیب داده‌های حاصل از حل‌گرهای مختلف در پاکت پروازی وسیله با هزینه زمانی مناسب، توسعه داده شده است. در ادامه، با استفاده از مدل دینامیکی و الگوریتم طراحی مسیر توسعه داده شده، مسیر بهینه بازگشتی وسیله اورایون با ضرایب ثابت و پایگاه داده ایرودینامیکی دقیق با هم مقایسه شده‌اند و پارامترهای مهم ورود به جو مانند شار حرارتی و سرعت نهایی مورد ارزیابی قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Thermal Optimum Trajectory Design of Manned Reentry Vehicles using the Aerodynamic Database Management Method

نویسندگان [English]

  • Seyed Moein Mahmoodzadeh Entezari 1
  • Alireza Alikhani 2
  • Meysam Mohammadi Amin 3
1 Aerospace Research Institute
2 ARI
3 ARI
چکیده [English]

In this study, a method for designing a thermal optimum reentry path based on aerodynamic database management has been developed using the Kriging and Co-Kriging methods. For the design of the reentry path in the conceptual design phase, the more precise the dynamical model of the reentry vehicle, the closer the path is to reality. One of the issues affecting the accuracy of the dynamic model of return vehicle is the aerodynamic coefficients in its flight envelope. For this purpose, in the present study using the new method, accurate aerodynamic data has been developed by combining the data from different solvers in the device flight envelope at the appropriate time. In the following, using the dynamic model and the developed reentry path design algorithm, the thermal optimal return path of the Orion device with constant coefficients and the exact aerodynamic database are compared, and the important parameters of reentry path, such as thermal flux and final velocity, are evaluated.

کلیدواژه‌ها [English]

  • Reentry Vehicle
  • optimum reentry path design
  • aerodynamic database
  • kriging and co-kriging
[1]    Desai, P. N., Lyons, D. T., Tooley J. and Kangas J. “Entry, descent, and landing operations analysis for the Stardust entry capsule.”Journal of Spacecraft and Rockets, Vol. 45, No. 6, 2008, pp. 1262-1268.
[2]    Ghoreyshi, M., Vallespin, D., Da Ronch A., Badcock K. J., Vos J., Hitzel S. “Simulation of aircraft manoeuvres based on computational fluid dynamics.”In AIAA Atmospheric Flight Mechanics Conference, 2010.
[3]    Ghoreyshi M., Badcock K.J., Ronch A. D., Marques S., Swift A. and Ames N., “Framework for establishing limits of tabular aerodynamic models for flight dynamics analysis.” Journal of Aircraft, Vol. 48, No. 1, 2011, pp. 42-55.
[4]    Rao, V. and Kenneth, D. "Entry trajectory tracking law via feedback linearization." Journal of Guidance, Control, and Dynamics," Vol. 21, No. 5 1998, pp. 726-732.
[5]    Graichen, K., & Petit, N., Constructive methods for initialization and handling mixed state-input constraints in optimal control.” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 5, 2008, pp. 1334-1343.
[6]    Rahimi, A., Dev Kumar, K., & Alighanbari, H.,  “Particle swarm optimization applied to spacecraft reentry trajectory.” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 1, 2012, pp.307-310.
[7]    Pamadi, B.N., Brauckmann, G.J., Ruth, M.J., &Fuhrmann, H.D., “Aerodynamic characteristics, database development, and flight simulation of the X-34 vehicle.” Journal of Spacecraft and Rockets, Vol. 38, No. 3, 2001, pp. 334-344.
[8]    Rogers, S.E., Chaderjian, N.M., Aftosmis, M.J., Pandya, S.A., Ahmad, J.U., & Tejmil, E. "Automated CFD Database Generation for a 2nd Generation Glide-Back-Booster,” 2003.
[9]    Rufolo, G.C., Roncioni, P., Marini, M., Votta, R. & Palazzo, S. “Experimental and Numerical aerodynamic data integration and aerodatabase development for the PRORA-USV-FTB_1 reusable vehicle.” In 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, AIAA, Vol. 8015, 2006.
[10]  Rizzi, A., and Tomac, M. “Creation of Aerodynamic Database for the X-31.” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, FL. 2010
[11]  Mohammadi-Amin, M., Entezari, M.M., &Alikhani, A. “An efficient surrogate-based framework for aerodynamic database development of manned reentry vehicles.”Advances in Space Research, Vol. 62, No. 5, 2018, pp. 997-1014.
[12]  Zhuang, Y., & Huang, H., “Time-optimal trajectory planning for underactuated spacecraft using a hybrid particle swarm optimization algorithm,” ActaAstronautica, Vol. 94, No. 2, 2014, pp. 690-698.
[13]  Samani, M., Tafreshi, M., Shafieenejad, I., & Nikkhah, A. A., “Minimum-time open-loop and closed-loop optimal guidance with GA-PSO and neural fuzzy for Samarai MAV flight,” IEEE Aerospace and Electronic System Magazine, Vol. 30, 2015, pp. 28-37.
[14]  Chen, W., Panahi, M., &Pourghasemi, H.R., Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena, Vol. 157, 2017, pp. 310-324.
[15]  Zhou, H., Wang, X., Bai, Y., & Cui, N., “Ascent phase trajectory optimization for vehicle with multi-combined cycle engine based on improved particle swarm optimization,” ActaAstronautica, Vol. 140, 2017, pp. 156-165.
[16]  Abdulkhader, H.K., Jacob, J., & Mathew, A.T., “Fractional-order lead-lag compensator-based multi-band power system stabilizer design using a hybrid dynamic GA-PSO algorithm,” IET Generation, Transmission & Distribution, 2017.
[17]  Rea, J., & Putnam, Z.,  “A comparison of two Orion skip entry guidance algorithms,” In AIAA Guidance, Navigation and Control Conference and Exhibit (p. 6424).