Document Type : Research Paper

Authors

1 PhD Student, Associate Professor, Aerospace Research Institute, Ministry of Science, Research and Technology, Tehran, Iran

2 Associate Professor, Aerospace Research Institute, Ministry of Science, Research and Technology, Tehran, Iran

3 Professor, University of Rennes 1

10.22034/jsst.2024.1455

Abstract

This paper presents a novel approach for designing a reconfigurable and steerable antenna utilizing plasma dielectric slabs along the aperture of a pyramidal horn antenna. The antenna offers electronic control over both the radiation gain and the direction of the main beam. The proposed configuration consists of four plasma slabs aligned perpendicular to the horn aperture along the horn axis, complemented by four diagonally connected plasma slabs. Each plasma slab can be independently switched ON or OFF, enabling dynamic adjustment of the radiation gain and steering of the main beam. Numerical investigations demonstrate that toggling the plasma slabs or controlling the plasma frequency of these slabs allows for fine-grained control over the radiation gain and beam steering of the pyramidal horn antenna. The selection of appropriate dimensions and angles for the plasma slabs plays a crucial role in achieving the desired beam steering angle and radiation gain control. To validate the concept, the proposed antenna configuration is designed and numerically simulated at a frequency of 10 GHz. The results indicate that the radiation gain of the antenna can be significantly enhanced, reaching up to 6.5 dBi. Additionally, the main beam direction can be steered within a range of ±12 degrees.

Keywords

Main Subjects

  1. bali, M. R. Alizadeh Pahlavani, and H. fayazi, “The design and fabrication of a plasma limiter to protect communication systems”, Journal of Applied Electromagnetics, vol. 10, no. 1, pp. 99-107, 2022 (in persian)
  2. Anderson, Plasma Antennas, Artech house, second edition, 2021.
  3. Kumar, “A review of plasma antennas,” National Conference on Higher Education: Ways Ahead, Delhi, India, Nov. 2014.
  4. P. Rayner, A. P. Whichello, and A. D. Cheetham, “Physical characteristics of plasma antennas,” IEEE Transactions on Plasma Science, vol. 32, no. 1,pp. 269–281, 2004, doi: 10.1109/TPS.2004.826019.
  5. Sadeghikia, M. T. Noghani, and M. R. Simard, “Experimental study on the surface wave driven plasma antenna,” AEU-International Journal of Electronics and Communications, vol. 70, no. 5, pp. 652–656, 2016, doi: https://doi.org/10.1016/j.aeue.2016.01.024.
  6. R. Dorbin, J. A Rashed Mohassel, F. Sadeghikia, and H. Binti Ja’afar, “Analytical estimation of the efficiency of surface-wave-excited plasma monopole antennas,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 4, pp. 3040-3045, 2022, doi:  10.1109/TAP.2021.3139967 .
  7. R. Dorbin, A. K Horestani, F. Sadeghikia, M. T Noghani, and H. Binti Ja’afar, “Analytical study on the resonance frequency of tunable surface-wave-excited plasma antennas,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 10, pp. 9073-9082, 2022, doi: 10.1109/TAP.2022.3184510 .
  8. Talafi Noghani, A. Karami Horestani, F. Sadeghikia, and M. R. Dorbin, “Theoretical modeling of resonant wavelength in 3-layered plasma antennas,” Waves in Random and Complex Media, vol.31, no. 6, pp.1587-1596, 2021, doi: https://doi.org/10.1080/17455030.2019.1687959 .
  9. Sadeghikia, F. Hodjat-Kashani, J. Rashed-Mohassel, and J. Ghayoomeh-Bozorgi, “Characterization of a surface wave driven plasma monopole antenna,” Journal of Electromagnetic Waves and Applications, vol. 26, no. 2-3, pp. 239-250, 2012, doi: https://doi.org/10.1163/156939312800030857 .
  10. Sadeghikia, M. R. Doorbin, Hajar. Jaafar, A. K Horestani, and M. T Noghani, “An overview on the implementation of surface wave driven plasma antennas,” In 2021 IEEE Symposium on Wireless Technology & Applications (ISWTA), pp. 53-57, 2021, doi: 10.1109/ISWTA52208.2021.9587357 .
  11. Sadeghikia, F. Hodjat-Kashani, J. Rashed-Mohassel, and J. Ghayoomeh-Bozorgi, “The effects of the tube characteristics on the performance of a plasma monopole antenna,” Progress In Electromagnetics Research, Moscow, Russia, 1209, 2012.
  12. Sadeghikia , F. Hodjat-Kashani, J. Rashed-Mohassel, and J. Ghayoomeh-Bozorgi, “Characteristics of plasma antennas under radial and axial density variations,” Progress In Electromagnetics Research, Moscow, Russia, pp. 1212–1215, 2012.
  13. Sadeghikia, A. K. Horestani, M. T. Noghani, M. R. Dorbin,H. Mahdikia, and H. Ja'afar, “A study on the effect of the radius of a cylindrical plasma antenna on its radiation efficiency,” International journal of engineering and technology, vol. 7, pp. 204-206, 2018.
  14. Sadeghikia, M. T. Noghani, and M. R. Dorbin, “A study on the physical characteristics and development of plasma reflectors,” Journal of radar, vol. 9, no. 1, pp. 35-44, 2021 (in persian)
  15. Sadeghikia, M. R. Dorbin, A. K. Horestani, M. T. Noghani, and H. Ja’afar, “Tunable inverted-F antenna using plasma technologies,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no.4, pp. 702– 706, 2019, doi:  10.1109/LAWP.2019.2901354 .
  16. Sadeghikia, M. R. Dorbin, A. K. Horestani, M. T. Noghani, and H. Ja’afar, “Multi-beam frequency tunable antenna based on plasma-nested helix,” In 2019 13th European Conference on Antennas and Propagation (EuCAP), pp. 1-3, IEEE, 2019.
  17. O. Arend, F. C. C. De. Castro, C. Müller, and M. C. F. De. Castro, “Toroidal plasma lens antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1155 – 1158, Nov. 2016, doi: 10.1109/LAWP.2016.2625800.
  18. K Horestani, M. T Noghani, F. Sadeghikia, M. R. Dorbin, M. Valipour, and F. Martín, “Reconfigurable and frequency tunable inverted F antenna based on plasma technology,” In 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 1175-1177, 2019, doi: 10.1109/ICEAA.2019.8879280 .
  19. Sadeghikiya, F. Hojatkashani, J. Rashed Mohasel, and S. J. Ghiyome Bozorgi, "Space application of a linear array of plasma antenna," Journal of Space Science and Technology, vol. 5, n. 3, pp. 59-66, 2012 (in Persian)
  20. Sadeghikia, “Plasma antenna technology in space missions,” Journal of space science and technology, vol. 10, no. 1, pp. 27-34, 2017 (in Persian)
  21. T. Jusoh, O. Lafond, F. Colombel, and M. Himdi, “Performance and radiation patterns of a reconfigurable plasma corner-reflector antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 1137-1140, 2013, doi: 10.1109/LAWP.2013.2281221 .
  22. T. Jusoh, O. Lafond, F. Colombel, and M. Himdi, “Performance of a reconfigurable reflector antenna with scanning capability using low-cost plasma elements”, Microwave and Optical Technology Letters, vol. 55, no. 12, pp. 2869-2874, 2013, doi: https://doi.org/10.1002/mop.27958.
  23. Sadeghikia, M. Valipour, M. T. Noghani, H. Ja’afar, and A. K. Horestani, “3D beam steering end-fire helical antenna with beamwidth control using plasma reflectors,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 5, pp. 2507–2512, 2021, doi: 10.1109/TAP.2020.3031473 .
  24. Sadeghikia, M. Valipour, A. K. Horestani, M. Himdi, and T. Anderson, “Beam-Steerable Helical Antenna Using Plasma Reflectors,” In 2022 16th European Conference on Antennas and Propagation (EuCAP), pp. 1-4, IEEE,  2022, doi: 10.23919/EuCAP53622.2022.9769604 .
  25. Ja’afar, M. T. B. Ali, A. N. B. Dagang, H. M. Zali, and N. A. Halili, “A reconfigurable monopole antenna with fluorescent tubes using plasma windowing concepts for 4.9-GHz application,” IEEE Transaction on Plasma Science, vol. 43, no. 3, pp. 815-820, 2015, doi:  10.1109/TPS.2015.2398878 .
  26. Anderson, “Antenna Beam Focusing and Steering with Refraction Through a Plasma,”  In 2019 13th European Conference on Antennas and Propagation (EUCAP), pp. 1-5, 2019.
  27. F. Sadeghikia, K. Zafari, MR. Dorbin, M. Himdi and A. K. Horestani, “Reconfigurable biconcave lens antenna based on plasma technology,” Scientific Report, vol. 13, no.1, p. 9213, 2023, doi: https://doi.org/10.1038/s41598-023-36332-9