نویسنده

صنعتی مالک اشتر - هوافضا

چکیده

در این مقاله، قانون هدایت صریح مبتنی بر همواری دیفرانسیلی برای وسایل بازگشتی به جو توسعه داده می‌شود. مسیر حرکت، به یک منحنی بیزیة سه‌بعدی درجة سه مقید شده و فرمان‌های کنترلی با حل مسئلة معکوس ترکیب شده با رویکرد همواری دیفرانسیلی و ارتباط با پارامترهای منحنی بیزیه، حاصل می‌شوند. مقایسة این روش با روش هدایت تناسبی خالص، دقت یکسانی را نشان می‌دهد اگرچه روش پیشنهادی زمینه و قابلیت مناسب‌تری را برای بهینه‌سازی مسیر ارائه می‌دهد. مزایای دیگری نظیر تولید مسیر با حداقل پارامترها، قابلیت استفاده در انواع وسایل بازگشتی به جو با مکانیزم‌های کنترلی متفاوت و استقلال از زمان اصابت، این رویکرد را متمایز کرده‌اند.

کلیدواژه‌ها

عنوان مقاله [English]

Explicit Flatness-Based Guidance in Reentry Phase

نویسنده [English]

  • R. Esmaelzadeh

چکیده [English]

An explicit guidance law is developed for a reentry vehicle. Motion is constrained to a three-dimensional Bezier curve. Acceleration commands are derived by solving an inverse problem that combined with differential flatness approach. Trajectory is related to Bezier parameters. A comparison with pure proportional navigation shows the same accuracy, but a higher capability for optimal trajectory to some degree. Other advantages such as trajectory representation with minimum parameters, applicability to any reentry vehicle configuration and any control scheme, and Time-to-Go independency make this guidance approach more favorable.

کلیدواژه‌ها [English]

  • Reentry
  • Explicitguidance
  • Differential flatness
  • Inverse dynamics
[1]Gräblin, M. H., Telaar J. and Schottle U. M., “ascent and Reentry Guidance Concept Based on nlp-Methods,” Acta Astronautica, Vol. 55, No. 3-9, 2004, pp. 461-471.
[2]shrivastava, S. K., Bhat, M. S., and Sinha, S. K., “Closed-loop Guidance of Satellite Launch Vehicle- an Overview,” Journal of the Institute of Engineers, Vol. 66, No.2, 1986, pp. 62-76.
[3]Yakimenko, O. A., “Direct Method for Rapid Prototyping of Near-Optimal Aircraft Trajectories,” Journal of Guidance, Control and Dynamics, Vol. 23, No. 5, 2000, pp. 865-875.
[4]Lu, P., “Inverse Dynamics Approach to Trajectory Optimization for an Aerospace Plane,” Journal of Guidance, Control and Dynamics, Vol. 16, No. 4, 1993, pp. 726-731.
[5]Borri, M., Bottasso, C. L. and Montelaghi, F., “Numerical Approach to Flight Dynamics,” Journal of Guidance, Control and Dynamics, Vol. 20, No. 4, 1997, pp.742-747.
[6]Kato, O. and Sugiura, I., “An Interpretation of Airplane General Motion and Control as Inverse Problem,” Journal of Guidance, Control and Dynamics, Vol. 9, No. 2, 1986, pp. 198-204.
[7]Lane, S. H. and Stengel, R. S., “Flight Control Design Using Non-Linear Inverse Dynamics,” Journal of Automatica, Vol. 24, No. 4, 1988, pp. 471-483.
[8]Sentoh, E. and Bryson, A. E., “Inverse and Optimal Control for Desired Outputs,” Journal of Guidance, Control and Dynamics, Vol. 15, No. 3, 1992, pp. 687-691.
[9]Hough, M. E., “explicit Guidance Along an Optimal Space Curve,” Journal of Guidance, Control, and Dynamics, Vol. 12, No. 4, 1982, pp. 495-504.
[10] Leng, G., “Guidance Algorithm Design: a Nonlinear Inverse Approach,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 5, 1998, pp. 742-746.
[11] Lin, C. F. and Tsai, L. L., “Analytical Solution of Optimal Trajectory-Shaping Guidance,” Journal of Guidance, Control, and Dynamics, Vol. 10, No. 4, 1987, pp. 61-66.
[12] Sinha, S. K. and Shrivastava, S. K., “optimal Explicit Guidance of Multistage Launch Vehicle Along Three-Dimensional Trajectory,” Journal of Guidance, Control and Dynamics, Vol. 13, No. 3, 1990, pp. 394-403.
[13] Taranenko, V. T. and Momdzhi, V. G., Direct method of modification in flight dynamic problems, Mashinostroenie, Moscow, Press, 1986 (In Russian).
[14] Cameron, J. D. M., “explicit Guidance Equations for Maneuvering Re-Entry Vehicles,” IEEE Conference on Decision and Control, USA, 1977.
[15] Page, J. and Rogers, R., “Guidance and Control of Maneuvering Reentry Vehicles,” IEEE Conference on Decision and Control, USA, 1977.
[16] Mortazavi, M., Trajectory Determination Using Inverse Dynamics and Reentry Trajectory Optimization, (PhD Thesis), Moscow Aviation Institute, 2000.
[17] Esmaelzadeh, R., Naghash, A., Mortazavi, M., “Explicit Reentry Guidance Law Using Bezier Curves”, Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 50. No. 170, 2008, pp. 225-230.
[18] Rogers, D. F. and Adams, J. A., Mathematical elements for computer graphics, New York, McGraw-Hill, 1990.
[19] Fliess, M., L´evine, J., Martin, P. and Rouchon, P., “Flatness and Defect of Nonlinearsystems: Introduction Theory and Examples”, International Journal of Control, Vol. 61, No. 1, 1995, pp. 1327–1361.
[20] Zerar, M., Cazaurang, F. and Zolghadri, A., “LPV Modeling of Atmospheric Re-entry Demonstrator for Guidance Reentry Problem”, Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, December 12-15, 2005.
[21] Morio, V., Cazaurang, F. and Vernis, P., “Flatness-Based Hypersonic Reentry Guidance of a Lifting-Body Vehicle,” Control Engineering Practice, Vol. 17, No. 5, 2009, pp. 588-596.
[22] Sira-Ramirez, H., “Soft Landing on a Planet: A Trajectory Planning Approach for the Liouvillian Model”, Proceedings of the American Control Conference, San Diego, 1999.
[23] Sun, L. G. W., Zheng, Z., “Trajectory Optimization for Guided Bombs Based on Differential Flatness”, Proceedings of the Chinese Control and Decision Conference, 2009.
[24] Neckel, T., Talbot, C. and Petit, N., “Collocation and Inversion for a Reentry Optimal Control Problem,” Proceedings of the 5th International Conference on Launcher Technology, 2003.
[25] Rogers, D. F. and Adams, J. A., Mathematical elements for computer graphics, New York, McGraw-Hill, 1990.
[26] Judd, K. B. and McLain, T. W., “spline Based Path Planning for Unmanned Air Vehicles,” AIAA Guidance, Navigation and Control Confrence and Exhibit, Canada, 2001.
[27] Shen, Z., On-Board Three-Dimensional Constrained Entry Flight Trajectory Generation, (phd Thesis), Iowa State University, 2002.
[28] Nagatani, K., Yosuke, I. and Yutaka, T., “Sensor-Based Navigation for Car-Like Mobile Robots Based on a Generalized Voronoigraph,” Advanced Robotics, Vol. 17, No. 5, 2003, pp. 385-401.
[29] Zhang, J., Raczkowsky, J. and Herp, A., “Emulation of Spline Curves and its Applications in Robot Motion Control,” Ieee Confrence on Fuzzy Systems, Orlando, FL, USA, 1994, pp. 831-836.
[30] Myong, H. S. and Kyu, J. L., “Bezier Curve Application in the Shape Optimization for Transonic Airfoils,” the 18th AIAA Applied Aerodynamics Confrence, USA, 2000, pp. 884-894.
[31] Venkataraman P., “Unique Solution for Optimal Airfoil Design,” the 15th AIAA Applied Aerodynamics Confrence, USA, 1997, pp. 205-215.
[32] Desideri, J. A., Peigin, S. and Timchenko, S., application of Genetic Algorithms to the Solution of the Space Vehicle Reentry Trajectory Optimization Problem, INRIA Sophia Antipolice Research Report, No. 3843, 1999.
[33] Rahman, T., Zhou, H., Chen, W., “Bézier Approximation Based Inverse Dynamic Guidance for Entry Glide Trajectory,”9th Asian Control Conference (ASCC), 2013.
[34] Lin, T. F., et al., “Novel Approach for Maneuvering Reentry Vehicle Design,” Journal of Spacecraft and Rocket, Vol. 40, No. 5, 2003, pp. 605-614.
[35] Shneydor, N. A., Missile Guidance and Pursuit; Kinematics, Dynamics, and Control, Chichester, Horwood publishing Ltd., 1998.
[36] Eisler, r. and Hull, D. G., “guidance Law for Planar Hypersonic Descent to a Point,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 2, 1993, pp. 400-402.