نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسنده

استادیار، پژوهشگاه هوافضا، وزارت علوم تحقیقات و فناوری، تهران، ایران

چکیده

نور یکی از فاکتورهای حیاتی برای کشت گیاهان است. لامپ‌های ال‌ای‌دی با طیف‌های نوری مختلف دارای مزایایی نظیر تولید گرمای کم، نیازمندی به انرژی پایین و طول عمر بالا بوده که اولین بار برای طراحی اتاقک‌های رشد گیاه در سیستم‌های کشت بسته و تحقیقات فضایی استفاده شدند. در این پژوهش، اثر طیف‌های نوری بر مکانیسم رشد گیاه داروئی بابونه آلمانی با بررسی محتوای رنگیزه، سیستم دفاع آنزیمی و متابولیت‌های ثانوی ارزیابی شد. بذرها پس از کشت در محیط موراشیگ و اسکوگ تحت طیف‌های سفید، قرمز، آبی و قرمز-آبی قرار گرفتند. گیاهچه‌ها بعد از 4 هفته برداشت شده و تحت آنالیزهای رشد و بیوشیمیایی قرار گرفتند. نتایج نشان داد که نور قرمز-آبی سبب القای وزن تر و خشک، طول ریشه، تعداد ریشه‌های جانبی، محتوای کلروفیل، پروتئین، فلاونوئید و آنزیم‌های آنتی‌اکسیدانی سوپراکسید دیسموتاز و کاتالاز شد. طیف آبی طول ساقه را کاهش و محتوای نسبی آب را افزایش داد. بالاترین مقدار هیدروژن پراکسید در گیاهچه‌های تیمار شده با نور قرمز مشاهده شد. بنظر میرسد طیف‌های نوری با تغییر سطح هیدروژن پراکسید در تنظیم فعالیت آنزیم‌های آنتی‌اکسیدانی و تجمع متابولیت‌های ثانوی نقش دارند و نور قرمز-آبی می‌تواند به عنوان طیف نوری مناسب برای طراحی اتاقک کشت گیاه بابونه در تحقیقات فضایی استفاده شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Growth Mechanism of Matricaria chamomilla Plant under Space Lighting System: Induction of Pigment Synthesis, Enzyme Defense System, and Antioxidant Metabolites

نویسنده [English]

  • Halimeh Hassanpour

Assistant Professor, Aerospace Research Institute, Ministry of Science, Research and Technology Tehran, Iran

چکیده [English]

Light is a vital factor for plant cultivation. LED lamps in different spectra have some advantages such as low heat production and energy requirement, and long lifespan, which was used for the first time to design plant growth chambers in closed culture systems and space research. In this research, impact of light spectrums was studied on the growth mechanisms through chlorophyll pigments, enzyme defense system, and antioxidant metabolite analyses. Seeds were cultivated in Murashige and Skoog medium and exposed to different light spectrums of white, red, blue, and red-blue. Then, the seedlings were harvested for growth and biochemical analyses after 4 weeks. Results showed that red-blue and blue lights induced the fresh weight, dry weight, root length, adventitious roots, chlorophyll content, protein, flavonoids and antioxidant enzymes of superoxide dismutase and catalase. Blue spectrum significantly decreased stem length and increased the relative water content. Moreover, the highest amount of hydrogen peroxide was observed in seedlings treated with red light. It seems that light spectra by changing the hydrogen peroxide level can regulate antioxidant enzyme activity and enhance antioxidant metabolites, and red-blue light may use as a suitable lighting spectrum for the design of M. chamomilla cultivation chamber in space research.

کلیدواژه‌ها [English]

  • Optical spectra
  • Matricaria chamomilla
  • Chlorophyll pigment
  • Hydrogen peroxide
  • Flavonoid
  1. D. Massa, J. C. Emmerich, R. C. Morrow, C. M. Bourget, and C. A. Mitchell, "Plant-growth lighting for space life support: a review," Gravitational and space biology, vol. 19, no. 2, pp. 19-30, 2006.
  2. Long, M. Pu, Z. Huang, J. Li, and Z. Xu, "Research progress of spectral regulation of plant growth and development," China Illuminating Engineering Journal, vol. 29, pp. 8-16, 2018.
  3. He, L. Qin, E. L. Chong, T.-W. Choong, and S. K. Lee, "Plant growth and photosynthetic characteristics of Mesembryanthemum crystallinum grown aeroponically under different blue-and red-LEDs," Frontiers in plant science, vol. 8, p. 361, 2017.
  4. Hassanpour, "Potential impact of red-blue LED light on callus growth, cell viability, and secondary metabolism of Hyoscyamus reticulatus," In Vitro Cellular & Developmental Biology-Plant, vol. 58, no. 2, pp. 256-265, 2022.
  5. S. Brown, A. C. Schuerger, and J. C. Sager, "Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting," Journal of the American Society for Horticultural Science, vol. 120, no. 5, pp. 808-813, 1995.
  6. -l. Chen, Q.-c. Yang, W.-p. Song, L.-c. Wang, W.-z. Guo, and X.-z. Xue, "Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation," Scientia Horticulturae, vol. 223, pp. 44-52, 2017.
  7. Wang, X. Xu, and J. Cui, "The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light," Photosynthetica, vol. 53, no. 2, pp. 213-222, 2015.
  8. F. Saldarriaga, Y. Cruz, and J. E. López, "Preliminary study of the production of metabolites from in vitro cultures of C. ensiformis," BMC biotechnology, vol. 20, no. 1, pp. 1-11, 2020.
  9. Wang, H. Zhang, B. Zhao, and X. Yuan, "Improved growth of Artemisia annua L hairy roots and artemisinin production under red light conditions," Biotechnology letters, vol. 23, pp. 1971-1973, 2001.
  10. Hassanpour and V. Niknam, "Establishment and assessment of cell suspension cultures of Matricaria chamomilla as a possible source of apigenin under static magnetic field," Plant Cell, Tissue and Organ Culture (PCTOC), vol. 142, no. 3, pp. 583-593, 2020.
  11. Zemestani, M. Rafraf, and M. Asghari-Jafarabadi, "Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus," Nutrition, vol. 32, no. 1, pp. 66-72, 2016.
  12. J. Merati, V. Niknam, H. Hassanpour, and M. Mirmasoumi, "Comparative effects of salt stress on growth and antioxidative responses in different organs of pennyroyal (Mentha pulegium L.)," Journal of Plant Research (Iranian Journal of Biology), vol. 28, no. 5, pp. 1097-1107, 2016(in Persain).
  13. Wheatherley, "Studies in the water relations of cotton plants. I. The field measurement of water deficit in leaves," New Phytol, vol. 49, pp. 81-87, 1950.
  14. I. Arnon, "Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris," Plant physiology, vol. 24, no. 1, p. 1, 1949.
  15. K. Lichtenthaler, "[34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes," in Methods in enzymology, vol. 148: Elsevier, pp. 350-382, 1987.
  16. DuBois, K. A. Gilles, J. K. Hamilton, P. t. Rebers, and F. Smith, "Colorimetric method for determination of sugars and related substances," Analytical chemistry, vol. 28, no. 3, pp. 350-356, 1956.
  17. Velikova, I. Yordanov, and A. Edreva, "Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines," Plant science, vol. 151, no. 1, pp. 59-66, 2000.
  18. M. Bradford, "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding," Analytical biochemistry, vol. 72, no. 1-2, pp. 248-254, 1976.
  19. N. Giannopolitis and S. K. Ries, "Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings," Plant physiology, vol. 59, no. 2, pp. 315-318, 1977.
  20. Aebi. "Catalase in vitro." In Methods in enzymology.” vol. 105, pp. 121-126. Academic press, 1984.
  21. A. Hatamnia, N. Abbaspour, and R. Darvishzadeh, "Antioxidant activity and phenolic profile of different parts of Bene (Pistacia atlantica subsp. kurdica) fruits," Food chemistry, vol. 145, pp. 306-311, 2014.
  22. T. Nhut, T. Takamura, H. Watanabe, K. Okamoto, and M. Tanaka, "Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs)," Plant Cell, Tissue and Organ Culture, vol. 73, pp. 43-52, 2003..
  23. Johkan, K. Shoji, F. Goto, S.-n. Hashida, and T. Yoshihara, "Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce," HortScience, vol. 45, no. 12, pp. 1809-1814, 2010.
  24. Soltani, H. Hassanpour, and M. Hekmati, "Study of light spectrums effects on some growth parameters and antioxidant capacity of Anthemis gilanica," Space Science and Technology, vol. 14, no. 1, pp. 15-22, 2021(in Persiqan).
  25. R. Briggs and M. A. Olney, "Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome," Plant physiology, vol. 125, no. 1, pp. 85-88, 2001.
  26. R. Poudel, I. Kataoka, and R. Mochioka, "Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes," Plant cell, tissue and organ culture, vol. 92, pp. 147-153, 2008.
  27. Petrillo, M. A. Godoy Herz, A. Barta, M. Kalyna, and A. R. Kornblihtt, "Let there be light: regulation of gene expression in plants," RNA biology, vol. 11, no. 10, pp. 1215-1220, 2014.
  28. [1] Ashouri Sheikhi, H. Hassanpour, P. Jonoubi, M. Ghorbani Nohooji, and M. Nadimifar, "The Effect of Gamma Irradiation on In vitro Total Phenolic Content and Antioxidant Activity of Ferula gummosa Bioss," Journal of Medicinal Plants, vol. 15, no. 59, pp. 122-131, 2016(in Persian).
  29. Hassanpour, V. Niknam, and B. S. Haddadi, "High-frequency vibration improve callus growth via antioxidant enzymes induction in Hyoscyamus kurdicus," Plant Cell, Tissue and Organ Culture (PCTOC), vol. 128, pp. 231-241, 2017.
  30. Shohael, M. Ali, K. Yu, E. Hahn, R. Islam, and K. Paek, "Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor," Process Biochemistry, vol. 41, no. 5, pp. 1179-1185, 2006.
  31. [1] Chen, Z. Vaghchhipawala, W. Li, H. Asard, and M. B. Dickman, "Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by Bax and oxidative stresses in yeast and plants," Plant Physiology, vol. 135, no. 3, pp. 1630-1641, 2004.
  32. E. Maffei, "Magnetic field effects on plant growth, development, and evolution," Frontiers in plant science, vol. 5, p. 445, 2014.