نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 پژوهشگاه فضایی ایران

2 دانشگاه علم و صنعت

3 پژوهشگاه فضایی ایران، پژوهشکده سامانه های ماهواره

4 پژوهشکده سامانه های ماهواره

5 مهندسی مکانیک، دانشکده فنی، دانشگاه تهران، تهران، ایران.

10.30699/jsst.2019.86089

چکیده

طراحی و پیاده‌سازی بستر آزمون سخت‌افزار در حلقه کنترل وضعیت ماهواره‌ها به همراه نتایج تجربی و ملاحظات عملی در این مقاله ارائه شده است. یک مجموعه‌ی سخت‌افزاری شامل میز سه‌درجه آزادی، سیم‌پیچ هلمهولتز، شبیه‌ساز پرتوهای خورشیدی، شبیه‌ساز مدار، عملگرهای چرخ عکس‌العملی، گشتاوردهنده مغناطیسی، حسگرهای ژیروسکوپ، خورشید، جی‌پی‌اس، AHRS، مغناطیس‌سنج و بورد الکترونیکی پردازشی، طراحی و راه‌اندازی شده است. به‌علاوه، پایش برخط وضعیت و موقعیت ماهواره در نرم‌افزار‌های LabVIEW و Celestia، تبادل رادیویی داده‌ها، طراحی بسته باتری و بورد توزیع توان الکتریکی از فعالیت‌های مکمل، برای ارتقاء بستر بوده است. سناریوها و مودهای عملیاتی در قالب الگوریتم‌های نرم‌افزاری، در بستر آزمون ارزیابی می‌شود. نتایج تجربی این بستر در آزمون آرام‌سازی توانسته سرعت زاویه‌ای اولیه را به سرعت الزام کمتر از 3/0 درجه برثانیه در سه‌محور برساند. امکان اعمال گشتاور اغتشاشی متناسب با موقعیت ماهواره، امکان آزمون پیشرانش بدون‌مخزن و سیستم پرفشار، ارتباط برخط میز و نمایشگرها و ساختار بهینه ‌هلمهولتز نوآوری‌هایی هستند که این بستر را از نمونه‌های مشابه متمایز می‌کند.

کلیدواژه‌ها

عنوان مقاله [English]

Design and implementation of hardware-in-the-loop (HIL) test-bed for spacecraft attitude control

نویسندگان [English]

  • Vahid Bohlouri 1
  • Hosein Haghighi 2
  • Samane Kaviri 3
  • Marzieh Taghinezhad 4
  • ehsan maani 5
  • Soheil Seyedzamani 3

1 Iranian Space Research Center

2 Iran university

3 Iranian Space Research Center

4 Iranian Space Research Center

5 Department of Mechanical Engineering, University of Tehran, Tehran, Iran.

چکیده [English]

In this paper, the design and implementation of hardware-in-the-loop (HIL) test-bed for spacecraft attitude control are presented with respect to the practical consideration. This test-bed includes an air bearing 3-DOF table, Helmholtz coil, sun simulator, orbit simulator, reaction wheels and torqrods as actuators, gyro, GPS, AHRS, magnetometer, and processing board. In addition, online monitoring of attitude and orbit position in LabVIEW and Celestia software, data telemetry, battery package and power distribution board are developed in this case. Using this test-bed, different operational modes are evaluated and verified for satellite attitude control. The experimental results of damping mode show that the capability of decreasing the angular velocity to the desired value (0.3 deg/s). Moreover, a torque simulator to apply the disturbances and test of propulsion scenarios, online telemetry with ground station, near-optimal design of Helmholtz coil are the advantages of this test-bed.

کلیدواژه‌ها [English]

  • Satellite attitude control
  • Hardware-in-the-loop (HIL) test-bed
  • Damping mode
  • Air bearing 3-DOF table
  • Helmholtz coil
  • Disturbance torque
  1. [1] Ley, W., Wittmann, K. and Hallmann, W. eds.,Handbook of space technology, John Wiley &Sons, 2009.

    [2] Larson, W.J. and Wertz, J.R., Space missionanalysis and design, Microcosm, Inc., Torrance,CA (US), 1992.

    [3] You, Z., Space Microsystems and Micro/Nano Satellites, 1st Ed, Butterworth-Heinemann., 2017.

    [4] Fortescue, P., Stark, J., Spacecraft systemEngineering, John Wiley & Sons, 2003.

    [5] Sidi, M. J., Spacecraft Dynamics and Control, APractical Engineering Approach, 1rd Ed.,Cambridge: Cambridge University Press, 1997.

    [6] Fazeli, H., Rahim, M.P. and Shahyari, M.,“Investigation & simulation of Nanoparticle application in satellite equipment cooling;simultaneous use of Nano fluid and a heat pipe with three evaporators” Aerospace knowledge and technology journal, Vol. 6, No. 2, 2017, pp.51-54.

    [7] Nagi, F., Zulkarnain, A. and Nagi, J., “Tuning fuzzy Bang–bang relay controller for satellite  attitude control system”, Aerospace Science and Technology, Vol. 26, No. 1, 2013, pp. 76-86..

    [8] 5 .Yousefian, P. and Salarieh, H., “Nonlinear control of sway in a tethered satellite system via attitude control of the main satellite” Aerospace Science and Technology, Vol. 63, 2017, pp. 317-327.

    [9] Nasrolahi, S.S. and Abdollahi, F. “Sensor fault detection and recovery in satellite attitude control”, Acta Astronautica, Vol. 145, 2018, pp. 275-283.

    [10] Bohlouri, V. and et al., “Modeling and System Identification of a reaction wheel with experimental data”, Modares Mechanical Engineering, Vol. 17,No.11, 2018, pp. 437-446 (in Persian)

    [11] Wang, R., Cheng, Y. and Xu, M., “Analytical redundancy based fault diagnosis scheme for satellite attitude control systems”. Journal of the Franklin Institute, Vol. 352, No. 5, 2015, pp. 1906-1931..

    [12] Dai, L. and et al., “Pseudo-satellite applications in deformation monitoring” GPS solutions, Vol. 5, No. 3, 2002, pp. 80-87.

    [13] Xing-wang, G. and et al., “Fractional Order Attitude Stability Control for Sub-satellite of Tethered Satellite System during Deployment” Applied Mathematical Modelling, Vol. 62, 2018., pp. 272-286.

    [14] Qinghua, Z. and et al., “Attitude control without angular velocity measurement for flexible satellites” Chinese Journal of Aeronautics, Vol. 31, 2018, pp. 1345-1351..

    [15] Theoret, ,N., Attitude Determination Control Testing System (Helmholtz Cage and Air Bearing), Honors Theses, Western Michigan University, 2016., pp. 13-55.

    [16] Inumoh, L.O., Forshaw, J.L. and Horri, N.M. Tilted wheel satellite attitude control with airbearing table experimental results” Acta Astronautica, Vol. 117, :2015, pp. 414-429..

    [17] Krishnanunni, A.R. and et al., “Inertia and Center of Mass Estimation of a 3 DoF Air Bearing  Platform”. FAC-PapersOnLine, Vol. 51, No. 1,2018, pp. 219-224..

    [18] Hurtado-Velasco, R. and Gonzalez-Llorente, J., “Simulation of the magnetic field generated by square shape  elmholtz coils” Applied Mathematical Modelling, Vol. 40, No. 23-24, 2016, pp. 9835-9847..

    [19] Chesi, S., Perez, O. and Romano, M., “A dynamic, hardware-in-the-loop, three-axis simulator of spacecraft attitude maneuvering with nanosatellite dimensions” , Journal of Small Satellites, Vol. 4. No. 1, 2015, pp. 315-328.

    [20] Jin, J. and et al., “Attitude control of a satellite with redundant thrusters” Aerospace Science and

    Technology, Vol. 10, No. 7, 2006, pp. 644-651.

    [21] Kazemi, E.M. and Jozvvaziri, M.A., Developed of an Algorithm for Design and Construction a Hot Gas Thruster and Comparied with Experimental Result”, Aerospace Knowledge and Technology Journal, Vol. 6, No. 2, 2017, pp. 73-86.

    [22] Mirshams, M. and et al., “Using air-bearing based platform and cold gas thruster actuator for satellite attitude dynamics simulation,” Modares Mechanical Engineering, Vol. 14, No. 12(, 2015, pp. 1-12.

    [23] Jung, D.w. and Tsiotras, P., “A 3-DoF Experimental

    Test-Bed for Integrated Attitude Dynamics and

    Control Researchm,”, AIAA Guidance, Navigation,and Control Conference, 2003.

    [24] Assaad Farhat, Attitude Determination and Control System for CubeSat, B.sc thesis, 2013.

    [25] Navabi M., Nasiri N., “Modeling and Simulating

    the Earth’s Magnetic Field Utilizing the 10th Generation of IGRF and Comparison the Linear and Nonlinear Transformation in Order to Use in Satellite Attitude Control” Journal of Space Science & Technology, (JSST), Vol. 3, No. 3, pp. 45-52, 2011. (In Persian)

    [26] CANBus extension protocol, ECSS-E-ST-50-15C, European Space Agency, 2013, pp. 19-25.

    [27] Bohlouri, V. and et al., Designe and implementation of a spacecraft Hardware in the loop, 17th Iranian conference in Aerospace society, Azzad University, Tehran, June 2018, (in Persian)

    [28] Bohlouri, V. and et al., “Designe and implementation of the detumbling mode of satellite attitude control

    using magnetic actuator in the test bed of Hardware in loop” 26th ICEE conference, Sajjad University,Mashhad, May 2018, (in Persian)

    [29] Jalali-Naini, S. H., Bohlouri, V., “Quasi-

    Normalized Analysis of Satellite Stabilization

    with Pulse-Width Pulse Frequency Modulator in

    Presence of Input Noise” Modares Mechanical

    Engineering, Vol. 18, No. 01(, 2018, pp. 165-176.

    [30] Avanzin, G. and Giulietti, F., “Magnetic

    Detumbling of a Rigid Spacecraft”, Journal of

    Guidance, Control and Dynamics, Vol 35, No. 14,

    2012, pp. 126-133.

    [31] Nelles O., Nonlinear System Identification.

    Springer publication, 2000..

    [32] Bohlouri, V., Khodamoradi, Z. and Jalali-Naini,

    S.H., Spacecraft Attitude Control Using Modelbased

    Disturbance Feedback Control Strategy,

    Journal of the Brazilian Society of Mechanical

    Sciences and Engineering, Vol. 40, No. 12, 2018,

    1. 557.

    [33] Navabi, M. and Hosseini M. R., “Modeling and

    Spacecraft Attitude Control Using Reaction

    Wheel with Feedback Linearization, its

    Performance Study Subject to Power and

    EULERINT” Modares Mechanical Engineering,

    Vol. 18, No. 1, pp. 51-61, 2018 (In Persian).