نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسنده

استادیار پژوهشگاه هوافضا

چکیده

گرانش زمین یکی از نیروهایی است که به طور مداوم بر موجودات زنده تأثیر می‌گذارد. تغییرات آن می‌تواند بر رفتار و عملکرد موجودات موثر باشد. مطالعه چنین اثراتی می‌تواند منجر به کشف روش‌های کاربردی نوین شود. فلزات سنگین خطرات زیادی برای سلامت انسان دارند. آن‌ها به عنوان شبه عنصر عمل نموده و حتی ممکن است در فرآیندهای متابولیک اختلال ایجاد کنند. کادمیوم به عنوان یکی از خطرناک‌ترین فلزات، به دنبال القای استرس اکسیداتیو، باعث ایجاد نقص در ترمیم DNA، آسیب به DNA و گاهی منجر به سرطان می‌شود. روش‌های مختلفی برای حذف فلزات سنگین از آب آشامیدنی معرفی شده است. حذف زیستی توسط پروبیوتیک‌ها یکی از این روش‌های بی خطر می‌باشد. در این مطالعه اثر لاکتوباسیلوس اسیدوفیلوس بر حذف زیستی کادمیوم در شرایط میکروگراویتی و گرانش مریخ اندازه‌گیری شد. نتایج نشان داد که تیمار 24 ساعته آب توسط لاکتوباسیلوس اسیدوفیلوس باعث حذف 77/43% از غلظت کادمیوم.در گرانش زمین، 74/54% تحت میکروگراویتی و 84/54% در گرانش مریخ شد. آنالیز آماری نشان داد لاکتوباسیلوس اسیدوفیلوس در حذف زیستی کادمیوم مؤثر بوده و حتی با تغییرات جاذبه نیز این قابلیت حفظ گردید. بنابراین می‌توان از این باکتری در رفع آلودگی فلزات سنگین در زمان ماموریت‌های فضایی به منظور حفظ سلامت فضانوردان بهره‌ جست.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Cadmium bioremoval from water by probiotics in simulated microgravity and Mars gravity

نویسنده [English]

  • maryam salavatifar

چکیده [English]

Earth's gravity is one of the forces that constantly affects living organisms. It's changes can affect organisms behavior and performance. Study of such effects can lead to the discovery of new practical methods. Heavy metal toxicity have a lot of risks to human health. They sometimes act as a pseudo element of the body and they may even interfere with metabolic processes. Cadmium as one of the most hazardous heavy metals, cause defects in DNA repair following the induction of oxidative stress, DNA damage and may lead to cancer. Several methods have been introduced to remove heavy metals from drinking water. Bioremoval by probiotic is one of these safe methods. In this study Lactobacillus acidophilus effect on cadmium bioremoval was measured in microgravity and Mars gravity conditions. The results demonstrated that the 24-hour water treatment by L. acidophilus removed 43.77% of the cadmium concentration in the Earth gravity, 54.74% under microgravity and 54.84% in Mars gravity. Statistical analysis showed that L. acidophilus was effective in cadmium bioremoval and this ability was maintained even with gravity changes. Therefore, this bacterium can be used to remove heavy metal pollution during space missions in order to maintain the health of astronauts.

کلیدواژه‌ها [English]

  • Cadmium
  • Lactobacillus acidophilus
  • Probiotic
  • microgravity
  • Mars gravity
[1] M. Salavatifar, S. M. Ahmadi, S. D. Todorov, K. Khosravi-Darani, and A. Tripathy, "Impact of microgravity on virulence, antibiotic resistance, and gene expression in beneficial and pathogenic microorganisms," Mini Reviews in Medicinal Chemistry, accepted 2023, doi: 10.2174/1389557523666230109160620
[2]  B. Huang, D.G. Li, Y. Huang, and C.T. Liu, "Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism," Military Medical Research, vol. 5, no. 1, pp. 1-14, 2018., doi: https://doi.org/10.1186/s40779-018-0162-9
[3]   M.R. Benoit and et al., "Microbial antibiotic production aboard the International Space Station," Applied microbiology and biotechnology, vol. 70, pp. 403-411, 2006, doi: https://doi.org/10.1007/s00253-005-0098-3
[4]  S. S. Sonone, S. Jadhav, M. S. Sankhla, and R. Kumar, "Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain," Lett. Appl. NanoBioScience, vol. 10, no. 2, pp. 2148-2166, 2020, doi: 10.33263/LIANBS102.21482166.
[5] I. Suhani, S. Sahab, V. Srivastava, and R. P. Singh, "Impact of cadmium pollution on food safety and human health," Current Opinion in Toxicology, vol. 27, pp. 1-7, 2021, doi: https://doi.org/10.1016/j.cotox.2021.04.004 .
[6] T.-H. Kim and et al., "Exposure assessment and safe intake guidelines for heavy metals in consumed fishery products in the Republic of Korea," Environmental Science and Pollution Research, vol. 27, no. 26, pp. 33042-33051, 2020, doi: https://doi.org/10.1007/s11356-020-09624-0 .
[7]  W. Duan and et al., "Levels of a mixture of heavy metals in blood and urine and all-cause, cardiovascular disease and cancer mortality: A population-based cohort study," Environmental Pollution, vol. 263, p. 114630, 2020, doi: https://doi.org/10.1016/j.envpol.2020.114630 .
[8]  D. Glicklich, C. T. Shin, and W. H. Frishman, "Heavy metal toxicity in chronic renal failure and cardiovascular disease: possible role for chelation therapy," Cardiology in Review, vol. 28, no. 6, pp. 312-318, 2020, doi  https://doi.org/10.1097/CRD.0000000000000304
[9] B. Fagerberg and L. Barregard, "Review of cadmium exposure and smoking‐independent effects on atherosclerotic cardiovascular disease in the general population," Journal of internal medicine, vol. 290, no. 6, pp. 1153-1179, 2021, doi: https://doi.org/10.1111/joim.13350 .
[10]  P. Sharma, H. M. Iqbal, and R. Chandra, "Evaluation of pollution parameters and toxic elements in wastewater of pulp and paper industries in India: A case study," Case Studies in Chemical and Environmental Engineering, vol. 5, p. 100163, 2022, doi: https://doi.org/10.1016/j.cscee.2021.100163 .
[11] M. Balali-Mood, K. Naseri, Z. Tahergorabi, M. R. Khazdair, and M. Sadeghi, "Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic," Frontiers in pharmacology, p. 227, 2021, doi: https://doi.org/10.3389/fphar.2021.643972 .
[12] E. Bianchi, and et al., "Improving the efficiency of wastewater treatment plants: Bio-removal of heavy-metals and pharmaceuticals by Azolla filiculoides and Lemna minuta," Science of The Total Environment, vol. 746, p. 141219, 2020, doi: https://doi.org/10.1016/j.scitotenv.2020.141219.
[13] A. Zoghi, and et al., "Effect of pretreatments on bioremoval of metals and subsequent exposure to simulated gastrointestinal conditions," Quality Assurance and Safety of Crops & Foods, vol. 14, no. 3, pp. 145-155, 2022, doi:  https://doi.org/10.15586/qas.v14i3.1012 .
[14] H. Kinoshita, and et al., "Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein," Research in microbiology, vol. 164, no. 7, pp. 701-709, 2013, doi: https://doi.org/10.1016/j.resmic.2013.04.004 .
[15] K. A. Hussein, S. H. Hassan, and J. H. Joo, "Potential capacity of Beauveria bassiana and Metarhizium anisopliae in the biosorption of Cd2+ and Pb2+," The Journal of General and Applied Microbiology, vol. 57, no. 6, pp. 347-355, 2011, doi: https://doi.org/10.2323/jgam.57.347.
[16] R. S. Mirmahdi , and et al., "Biodecontamination of milk and dairy products by probiotics: Boon for bane," Italian Journal of Food Science, vol. 33, no. SP1, pp. 78-91, 2021, https://doi.org/10.15586/ijfs.v33iSP2.2053 .
[17] M. R. Hadiani, K. Khosravi-Darani, N. Rahimifard, and H. Younesi, "Assessment of mercury biosorption by Saccharomyces cerevisiae: response surface methodology for optimization of low Hg (II) concentrations," Journal of environmental chemical engineering, vol. 6, no. 4, pp. 4980-4987, 2018, doi: https://doi.org/10.1016/j.jece.2018.07.034 .
[18] R. Massoud, K. Khosravi‐Darani, A. Sharifan, G. Asadi, and A. Zoghi, "Lead and cadmium biosorption from milk by Lactobacillus acidophilus ATCC 4356," Food Science & Nutrition, vol. 8, no. 10, pp. 5284-5291, 2020, doi: https://doi.org/10.1002/fsn3.1825 .
[19] Z. Afsharian, M. Salavatifar, and K. Khosravi_Darani, "Impact of simulated microgravity on bioremoval of heavy-metals by Lactobacillus acidophilus ATCC 4356 from water," Heliyon, vol. 8, no. 12, 2022, doi: https://doi.org/10.1016/j.heliyon.2022.e12307.
[20] S. Sieuwerts, F. A. De Bok, E. Mols, W. M. De Vos, and J.E van Hylckama Vlieg, "A simple and fast method for determining colony forming units," Letters in applied microbiology, vol. 47, no. 4, pp. 275-278, 2008, doi:  https://doi.org/10.1111/j.1472-765X.2008.02417.x .
[21]   M. R. Hadiani, K. K. Darani, N. Rahimifard, and H. Younesi, "Biosorption of low concentration levels of Lead (II) and Cadmium (II) from aqueous solution by Saccharomyces cerevisiae: Response surface methodology," Biocatalysis and agricultural biotechnology, vol. 15, pp. 25-34, 2018, https://doi.org/10.1016/j.bcab.2018.05.001
[22] M. Salavatifar, N. Mosallaei, and A. H. Salmanian, "Heterologous Expression of Shiga-Like Toxin Type 2 in Microgravity Condition," Space Science and Technology, vol. 15, no. 4, pp. 103-113, 2022, doi:  https://doi.org/10.30699/jsst.2023.1396
[23] U. Nations, "Teacher’s Guide to Plant Experiments in Microgravity. Human Space Technology Initiative," ed: United Nations Programme on Space Applications, Publishing and Library,2013.
[24] Z. Hajebrahimi, "3-D clinostat for microgravity simulation in cellular and molecular studies," Journal of Technology in Aerospace Engineering, vol. 1, no. 2, pp. 27-33, 2017 (in Persian)
[25]  P. Gupta and B. Diwan, "Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies," Biotechnology Reports, vol. 13, pp. 58-71, 2017, doi: https://doi.org/10.1016/j.btre.2016.12.006.
[26] R. S. Mirmahdi, V. Mofid, A. Zoghi, K. Khosravi_Darani, and A. M. Mortazavian, "Risk of low stability Saccharomyces cerevisiae ATCC 9763-heavy metals complex in gastrointestinal simulated conditions," Heliyon, vol. 8, no. 5, 2022, doi: DOI: 10.1016/j.heliyon.2022.e09452.
[27] L. Mauclaire and M. Egli, "Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates," FEMS Immunology & Medical Microbiology, vol. 59, no. 3, pp. 350-356, 2010, doi:  https://doi.org/10.1111/j.1574-695X.2010.00683.x
[28] S. Xing , and et al., "Lead biosorption of probiotic bacteria: effects of the intestinal content from laying hens," Environmental Science and Pollution Research, vol. 24, pp. 13528-13535, 2017, doi: https://doi.org/10.1007/s11356-017-8896-6
[29] G. Senatore, F. Mastroleo, N. Leys, and G. Mauriello, "Effect of microgravity & space radiation on microbes," Future microbiology, vol. 13, no. 07, pp. 831-847, 2018, doi: https://doi.org/10.2217/fmb-2017-0251.
[30] C. A. Nickerson, C. M. Ott, J. W. Wilson, R. Ramamurthy, and D. L. Pierson, "Microbial responses to microgravity and other low-shear environments," Microbiology and Molecular Biology Reviews, vol. 68, no. 2, pp. 345-361, 2004, doi: https://doi.org/10.1128/mmbr.68.2.345-361.2004