نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 گروه شیمی دارویی ، دانشکده شیمی دارویی ، واحد علوم پزشکی ، دانشگاه آزاد اسلامی، تهران، ایران

2 پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری، تهران، ایران

3 گروه شیمی آلی ، دانشکده شیمی دارویی ، واحد علوم پزشکی، دانشگاه آزاد اسلامی،تهران، ایران

10.22034/jsst.2021.1225

چکیده

طیف‌های نوری LED، منابع نوری مناسب برای تحقیقات گیاهان در ایستگاه بین‌المللی فضایی و سیستم پشتیبان حیات هستند. در پژوهش حاضر تاثیر طیف‌های مختلف نوری بر برخی پارامترهای رشد و فعالیت آنتی‌اکسیدانی در گیاه بابونه گیلانی مورد بررسی قرار گرفت. گیاهچه‌ها با محلول 2/1 هوگلند آبیاری شده و تحت طیف‌های مختلف نوری سفید، قرمز-آبی و قرمز دور قرار گرفتند. گیاهچه‌ها پس از گذشت 4 هفته برداشت شده و تحت آنالیزهای فیزیولوژیکی و بیوشیمیایی قرار گرفتند.نتایج نشان داد که طیف نوری قرمز-آبی سبب افزایش وزن‌تر، وزن‌خشک، محتوای نسبی آب و طول ریشه در مقایسه با سایر طیف‌های نوری شد. محتوای پراکسید هیدروژن تفاوت معنی‌داری را در بین طیف‌های مختلف نشان نداد و بیشترین فعالیت جاروب‌کنندگی رادیکال‌هایDPPH در طیف نوری سفید مشاهده شد. همچنین، گیاهچه‌های تیمار شده با نور قرمز-دور، بیشترین طول ساقه را نشان دادند. به‌نظر می‌رسد کاهش رشد تحت نور سفید در ارتباط با انتقال منبع کربن و انرژی برای بیوسنتز ترکیبات آنتی اکسیدان در گیاه بابونه گیلانی باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Study of light spectrums effects on some growth parameters and antioxidant capacity of Anthemis gilanica

نویسندگان [English]

  • Farnoush Soltani 1
  • Halimeh Hassanpour 2
  • Malek Hekmati 3

1 Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medicinal Sciences, Islamic Azad University, Tehran, Iran

2 Aerospace Research Institute, Ministry of Science, Research and Technology, Tehran, Iran

3 Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medicinal Sciences, Islamic Azad University, Tehran, Iran

چکیده [English]

LED light spectrums are the proper light source for plant research in the International Space Station and the life support system. In the present study, effects of different light spectrums on some growth parameters, and antioxidant activity were investigated in Anthemis gilanica. Seedlings irrigated with 1/2 Hougland solution under different light spectrums including white, red-blue and deep red. Seedlings were harvested for physiological and biochemical analyzes after 4 weeks. Results showed the fresh and dry weight, relative water content and root length increased under the red-blue light spectrum comparing to other spectrums. Hydrogen peroxide level didn't significantly change under different light spectrums. Seedlings treated with white spectrum showed the highest DPPH scavenging activity. Also, seedlings treated with deep red spectrum showed the maximum shoot length. It seems that decrease of growth under white spectrum is related to transfer carbon and energy sources for antioxidant compound biosynthesis.

کلیدواژه‌ها [English]

  • Anthemis gilanica
  • Light Spectrum
  • growth
  • DPPH
  • Hydrogen peroxide
[1] Farzad, V. M. A.,Medicinal and aromatic plants, Golami Press, 2008(In Persian).
[2] Fernandes, R., Genus Anthemis L. In Flora Europaea, Cambridge University Press, 1976.
[3] Bremer, K. and Humphries, C.J., “Generic monograph of the Asteraceae-Anthemideae,”Bulettin of Natural History Musieum, Vol. 23, 1993, pp. 71–177.
[4] Bremer, K., Asteraceae, Cladistics and Classification, Portland, Oregon: Timber Press, 1994.
[5] Bardaweel, S. K., Tawaha, K. H. A. and Hudaib, M. M., “Antioxidant, antimicrobial and antiproliferative activities of Anthemispalestina essential oil,” BMC Complementary and Alternative Medicine, Vol. 14, 2014, pp. 297.
[6] Stojkovic, N.,  Stojkovic, M. and Marinkovic, M., “Polyphenol content and antioxidant activity of Anthemiscretica L. (Asteraceae),” Oxidation Communications, Vol. 37, No.1, 2014, pp. 237-246.
[7] Massa, G. D., et al.,“Development and testing of an efficient LED intracanopy lighting design for minimizing equivalent system mass in an advanced life support system,ˮGravity Space Biology Bull, Vol. 18, 2005, pp. 87-88.
[8] Sager, J. C. and McFarlane, J. C., Radiation. In:Plant Growth Chamber Handbook. (Langhans, R. W. andTibbitts, T.W., Eds.) Iowa State University: NorthCentral Regional Research Publication No. 340, IowaAgriculture and Home Economics Experiment Station Special Report, 1997.
[9] Muneer, S., Kim, E. J., Park, J. S., and Lee, J. H., “Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic cctivity under different light intensities in lettuce leaves (Lactuca sativa L.),” International Journal of Molecular Sciences, Vol. 15(3), 2014, pp. 4657–4670.
[10]Zheng, L. and Labeke, M. C. V., “Long-term effects of red- and blue-light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants,” Front Plant Science, 2017, doi.org/10.3389/fpls.2017.00917.
[11]  Nishimura, T., et al.,“Concentrations of perillaldehyde, limonene, and anthocyanin of perilla plants as affected by light quality under controlled environments,” Scientia Horticulturae, Vol. 122, 2009, pp. 134–137.
[12]  Dou, H.,Niu, G., Gu, M. and Masabni, J. G., “Effects of light quality on growth and phytonutrient accumulation ofherbs under controlled environments,” Horticulture, Vol. 3, 2017, pp. 36.
[13]  Darko, E., et al., “Photosynthesis under artificial light: The shift in primary and secondary metabolism,” philosophical Transactions of the Royal Society, Vol. 3, 2014,369.
[14] Mohammad, R., et al.,“High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production,” Agronomy for Sustainable Development, Vol. 34, 2014, pp. 879–886.
[15] Heydarizadeh, P., Zahedi, M. andSabzalian, M.R.,“The effect of LED light on growth, essential oil content and activity of antioxidant enzymes in Pepper Mint (Menthapiperita L.),”Journal of Plant Process and Function,Vol. 3, No. 8, 2014, pp. 13-24(In Persian).
[16] Ramakrishna, A. andGokare, A. R., “Influence of abiotic stress signals on secondary metabolites in plants,”Plant Signaling & Behavior, Vol. 6, No. 1, 2011, 1720-1731.
[17] Wheatherley, P. E.,“Studies in the water relations of cotton plants, The field measurement of water deficit in leaves,” Journal New Phytologist, Vol. 49, 1973, pp. 81–87.
[18] Velikova, V., Yordanov, I., Edreva, A., “Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines,” Journal Plant Science, Vol. 151, 2000, pp. 59–66.
[19] Hassanpour, H., Niknam, V. and Haddadi, B. S., “High-frequency vibration improve callus growth via antioxidant enzymes induction," Hyoscyamus kurdicus. Plant Cell Tissue Organ Culture, Vol. 128, 2016, pp. 231–241.
[20] Kim, H. H., et al.,“Green-light supplementation for enhanced lettuce growth under red and blue light-emitting diodes,” Hort Science, Vol. 39, 2004, pp. 1617–1622.
[21] Ashouri-Sheikhi, A., et al.,“The effect of gamma irradiation on in vitro total phenolic content and antioxidant activity of Ferulagummosa Bioss. Journal of Medicinal Plant,Vol. 15, No. 59, 2016, pp. 122-131. 
[22] Chang, C., et al., “Estimation of total flavonoid content in propolis by two complementary colorimetric methods”. Food Drug Anal, Vol. 10, 2002, pp. 178-82.
[23] Yano, S., et al., “Improvements in and actual performance of the plant experiment unit onboard Kibo, the Japanese experiment module on the international space station”. Advances in Space Research, Vol. 51, 2013, pp. 780–788.
[24] Bayat, L., et al., “Effects of growth under different light spectra on the subsequent high light tolerance in rose plants,” AoB Plants, Vol. 10, 2018, PP. 1-17.
[25] Singh, D. andBasu, C. H., Meinhardt-Wollweber, M. and Roth, B.,“LEDs for energy efficient greenhouse lighting”. Hannover Centre for Optical Technologies, Nienburger Str. 17, 2014, Hannover, Germany.
[26] Baroli, I., et al.,“The contribution of photosynthesis to the redlight response of stomatal conductance,” Plant Physiology, Vol. 146, 2008, pp. 737–747.
[27] Ahmadi, T., Shabani L.andSabzoliyan M, R.,“Effects of LED light spectrum on growth and rosmarinic acid content in Melissaofficinalis L.,” Journal of Plant Process and Function,Vol. 6, No. 21, 2017,pp. 213-222(In Persian).
[28] Oh, E., et al.,“Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis,”Plant Journal, Vol. 47, No. 1, 2006, pp. 124-39.
[29] Merati, M. J., et al.,“Comparative effects of salt stress on growth and antioxidative responses in different organs of pennyroyal (Menthapulegium L.). Journal Plant Research,Vol. 28, No. 5,2015, pp. 1097-1107.
[30] Azad, M. O. K., et al., “Effect of artificial LED light and FAR infrared irradiation on phenolic compound, isoflavones and antioxidant capacity in soybean (Glycine max L.) sprout”.  Foods, Vol. 7, 2018, pp. 1-10. 
[31] Cevallos-Casals, B. A. and Cisneros-Zevallos L., “Impact of germination on phenolic content and antioxidant activity of 13 edible seed species”. Food Chemistry, Vol. 119, 2010, pp.1485–1490.
[32] Wu, M. C., et al., “A novel approach of LED light radiation improves the antioxidant activity of pea seedlings,” Food Chemistry, Vol. 101, 2007, pp. 1753–1758.
[33] Shabrangi, A., et al.,“Induction of genetic variation by electromagnetic fields in Zeamays L. and Brassicanapus L. Caryologia, Vol. 68, No. 4, 2015,pp. 272-279.
[34] Seo, J. M.,“Phenylalanine and LED lights enhance phenolic compound production in Tartary buckwheat sprouts,” Food Chemistry, Vol. 177, 2015, pp. 204–213.
[35] Lee, S. W., et al., “Antonisamy P, Arasu M. V, Suzuki T, Al-Dhabi N. A, Kim S-J., “Influence of different LED lamps on the production of phenolic compounds in common and Tartary buckwheat sprouts,” Industrial Crops and Products, Vol. 54, 2014, pp. 320–326.
[36] Son, K. H.and Oh, M. M., “Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes,” Horticultural Science, Vol. 48, 2013, pp. 988–995.