نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشکده مهندسی هوافضا، صنعتی خواجه نصیرالدین طوسی، تهران، ایران

10.22034/jsst.2021.1234

چکیده

در این مقاله الگوریتم جدیدی جهت تعیین چگالی داده‌های پراکنده بر روی سطح کره ارائه و سپس از الگوریتم پیشنهادی به همراه روش خوشه‌بندی Geodesic Weighted K-Means و مثلث‌بندی دلونی جهت تولید کاتالوگ ستارگان یکنواخت استفاده شده است. مقایسه نتایج با نتایج حاصل از سایر مقالات مرتبط نشان داد که الگوریتم پیشنهادی منجر به کاهش قابل توجه در احتمال مشاهده تعداد زیاد ستاره‌ها در تمام میدان دیدهای شبیه‌سازی شده حس‌گر ستاره شده است. این بهبود، نتیجه افزایش یکنواختی کاتالوگ ستاره علی‌الخصوص در قطبین کره سماوی ناشی از الگوریتم تعیین چگالی پیشنهادی است. از سوی دیگر، استفاده از الگوریتم تعیین چگالی داده مناسب، منجر به افزایش احتمال مشاهده چند ستاره (مانند 3 یا 5) در همه میدان‌های دید مورد استفاده در شبیه‌سازی مونت‌کارلو شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Determination of the density of spherical scattered data for use in star catalog uniformity

نویسندگان [English]

  • Farshad somayehee 1
  • Amir Ali Nikkhah 1
  • Jafar Roshanian 2

1 Department of Aerospace Engineering, K.N Toosi University of Technology, Tehran, Iran

2 Faculty of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, Iran

چکیده [English]

In this paper, a new algorithm for determining the density of scattered data at the surface of the sphere is presented and then the proposed algorithm along with Geodesic Weighted K-Means clustering and Deluany triangulation are used to make uniform star catalogs. Comparison of the results with the results of other related articles shows that the proposed algorithm resulted in a significant decrease in the probability of observing a large number of stars in all simulated star sensor fields of view. This improvement is due to the uniformity of the star catalog, especially in the celestial sphere poles due to the proposed density determination algorithm. On the other hand, the use of a proper data density algorithm has increased the likelihood of observing a few stars (such as 3 or 5) in all fields of view used in the Monte Carlo simulation.

کلیدواژه‌ها [English]

  • star sensor
  • uniform star catalog
  • density of scattered data
  • Clustering
[1]  M. Plaue, G. Bärwolff, and H. Schwandt, “On measuring pedestrian density and flow fields in dense as well as sparse crowds,” in Pedestrian and Evacuation Dynamics 2012, Springer, 2014, pp. 411–424.
[2]  D. Helbing, A. Johansson, and H. Z. Al-Abideen, “Dynamics of crowd disasters: An empirical study,” Phys. Rev. E, vol. 75, no. 4, p. 46109, 2007.
[3]  B. W. Silverman, Density estimation for statistics and data analysis. Routledge, 2018.
[4]  Z. Fang, J. P. Yuan, Y.-C. Wang, and S. M. Lo, “Survey of pedestrian movement and development of a crowd dynamics model,” Fire Saf. J., vol. 43, no. 6, pp. 459–465, 2008.
[5]  S. P. Hoogendoorn and W. Daamen, “Pedestrian behavior at bottlenecks,” Transp. Sci., vol. 39, no. 2, pp. 147–159, 2005.
[6]  F.P. Navin and R.J. Wheeler, “Pedestrian flow characteristics,” Traffic Eng. Inst Traffic Engr, vol. 39, 1969.
[7]  S.-T. Chiu, “Boundary adjusted density estimation and bandwidth selection,” Stat. Sin., pp. 1345–1367, 2000.
[8]  B. Gärtner and M. Hoffmann, “Computational Geometry Lecture Notes1 HS 2012,” 2013.
[9]  A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial tessellations: concepts and applications of Voronoi diagrams, vol. 501. John Wiley & Sons, 2009.
[10] H.-S. Na, C.-N. Lee, and O. Cheong, “Voronoi diagrams on the sphere,” Comput. Geom., vol. 23, no. 2, pp. 183–194, 2002.
[11] B. Steffen and A. Seyfried, “Methods for measuring pedestrian density, flow, speed and direction with minimal scatter,” Phys. A Stat. Mech. its Appl., vol. 389, no. 9, pp. 1902–1910, 2010.
[12] M. A. Samaan, C. Bruccoleri, D. Mortari, and J. L. Junkins, “Novel techniques for creating nearly uniform star catalog,” Adv. Astronaut. Sci., vol. 116, no. 979, pp. 1–13, 2004.
[13] H.-Y. Kim and J. L. Junkins, “Self-organizing guide star selection algorithm for star trackers: thinning method,” in Aerospace Conference Proceedings, 2002 .IEEE, 2002, vol. 5, p. 5.
[14] B. B. Spratling and D. Mortari, “A survey on star identification algorithms,” Algorithms, vol. 2, no. 1, pp. 93–107, 2009.
[15] J. D. Vedder, “Star trackers, star catalogs, and attitude determination-Probabilistic aspects of system design,” J. Guid. Control. Dyn., vol. 16, no. 3, pp. 498–504, 1993.
[16]E. K. Silverman, “Autonomous navigation recovery for fine pointing low earth orbiting spacecraft.” George Washington University, 1998.
[17] R. Bauer, “Distribution of points on a sphere with application to star catalogs,” J. Guid. Control. Dyn., vol. 23, no. 1, pp. 130–137, 2000.
[18] A. Prakash, A. Wu, J. Liu, and R. K. Li, “Performance based evaluation of star catalog generation methods,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2002, p. 4669.
[19] C. Zhang, C. Chen, and X. Shen, “A new guide star selection algorithm for star tracker,” in Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on, 2004, vol. 6, pp. 5445–5449.
[20] F. C. Liu, Z. H. Liu, W. Liu, D. S. Liang, K. Cui, and H. Yuan, “A research on navigation star catalog selection algorithm based on SVM,” in Advanced Materials Research, 2013, vol. 706, pp. 613–617.
[21] X. Li, J. Yang, L. Zhang, S. Li, and G. Jin, “A new simplified selection algorithm of the guide star catalogue for a star sensor,” J. Navig., vol. 67, no. 6, pp. 984–994, 2014.
[22] B. P. S. and I. S. S. Muhammad Arif Saifudin, “Star Catalog Generation for Satellite Attitude Navigation Using Density Based Clustering,” J. Comput. Sci., vol. 11, no. 12, pp. 1082–1089, 2015.
[23] J. Roshanian, S. Yazdani, M. Ebrahimi, M. J. H. Kabutarkhani, M. Javad, and H. Kabutarkhani, “Uniform Star Catalog Generation and Comparison Criterion Introduction for a Typical Star Tracker,” Modares Mech. Eng., vol. 15, no. 3, pp. 344–352, 2015.
[24] J. Roshanian, S. Yazdani, S. Bekranbehesht, and M. Ebrahimi, “2MASS infrared star catalog data mining for use onboard a daytime star tracker,” in Recent Advances in Space Technologies (RAST), 2015 7th International Conference on, 2015, pp. 75–79.
[25] J. Roshanian, S. Yazdani, S. BekranBehesht, and M. Ebrahimi, “Develop mission catalog and robust pattern recognition algorithm to enhance the performance of the star tracker throughout the day,” Tabriz Mech. Eng., vol. 50, no. 2, pp. 20–26, 2017.
[26]  J. Li, G. Wang, and X. Wei, “Generation of Guide Star Catalogue for Star Trackers,” IEEE Sens. J., 2018.
[27] W. Wang, X. Wei, J. Li, and G. Zhang, “Guide star catalog generation for short-wave infrared (SWIR) All-Time star sensor,” Rev. Sci. Instrum., vol. 89, no. 7, p. 75003, 2018.
[28] F. Somayehee, A. A. Nikkhah, and J. Roshanian, “Uniform star catalog using triangulation for application in star sensor,” Modares Mech. Eng., vol. 18, no. 04, pp. 725–734, 2018.
[29] F. Somayehee, A. A. Nikkhah, and J. Roshanian, “Uniform Star Catalogue using GWKM Clustering for Application in Star Sensors,” J. Navig., vol. 01, pp. 1–17, 2019.
[30]  J. Martín-Fleitas et al., “Enabling Gaia observations of naked-eye stars,” in pace Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave. International Society for Optics and Photonics, 2014.
[31] J. Li, G. Wang, and X. Wei, “Generation of guide star catalog for star trackers,” IEEE Sens. J., vol. 18, no. 11, pp. 4592–4601, 2018.
[32] A. ali Nikkhah,  farsahd somayehee, and J. Roshanian, “Simulation of night sky images with an ideal pinhole model for a star sensor,” J. Sp. Sci. Technol., vol. 11, no. 3, pp. 21–32, Dec. 2018.