نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 دانشیار دانشکده فنی - مهندسی، دانشگاه اصفهان، اصفهان، ایران

2 مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک‌اشتر، تهران، ایران

چکیده

در این مقاله به ارائۀ الگوریتم و نرم‌افزاری جامع جهت طراحی مفهومی موتورهای موشکی با مولفه-های پیشران سرمازا، پرداخته شده است. در الگوریتم، پنج چرخه کاربردی تغذیۀ تحت فشار، مولدگازی، احتراق مرحله‌ای، انبساطی بسته و باز مدلسازی شده است. به منظور صحت‌سنجی، موتورهایVulcain و HM7B، بازطراحی و مقایسۀ نتایج حاصل با اطلاعات واقعی بیانگر خطای کمتر از 5 درصد پارامترهای اصلی طراحی و کمتر از 20 درصد درسایر پارامترها است که در مرحلة طراحی مفهومی از دقت کافی برخوردارند. از مزایای این نرم‌افزار وجود قریب150 پارامتر و 14 نمودار مربوط به رفتار جریان در محفظة تراست و جلیقة خنک‌کاری در خروجی است که امکان مطالعة پارامتریک تاثیر تغییرات ورودی‌ها بر خروجی‌ها را فراهم می‌نماید. مدلسازی توابع موجود در الگوریتم و محاسبات مربوط به احتراق با استفاده از نرم‌افزارهایMATLABوCEAانجام گرفته و نهایتاً با ادغام در محیط برنامه‌نویسی Visual studio و با استفاده از زبان برنامه‌نویسی C#، نرم‌افزاری با رابط کاربری گرافیکی کاربرپسند ارائه شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Developing a Universal Software for the Conceptual Design of Cryogenic Rocket Propulsion System

نویسندگان [English]

  • Nourbakhsh Fouladi 1
  • Neda sadat Seddighi renani 2

1 Associate Professor, ِDepartment of Technical Engineering. University of Isfahan , Isfahan, Iran

2 M.Sc., Department of Mechanical Engineering, Malek Ashtar University of Technology, Tehran, ‎Iran

چکیده [English]

In this article, a universal algorithm and engineering software is presented for the conceptual design of cryogenic rocket propulsion system. The algorithm consisting five engine working cycles: pressure fed, gas generator, staged combustion, closed and opened expansion cycles. For validation, the Vulcain and HM7Bengines were redesigned, the obtained results certifies that the main design parameters have less than 5% errors and the other less than 20%. One of the advantages of this software is the presence of abut150 parameters in the output and 14 diagrams related to the flow behavior in the thrust chamber and cooling vest, which allows the parametric study of the effect of input changes on the outputs.The modeling of mathematical functions and the combustion has been done, by using the MATLAB and CEAsoftware. Finally, by merging in Visual studio programming environment and with the help of C# programming language, a software with GUI is presented.

کلیدواژه‌ها [English]

  • Rocket propulsion design algorithm
  • Liquid propellant rocket propulsion system
  • Rocket propulsion conceptual design
  • Cryogenic rocket engine
  • Rocket propulsion design software
[1] J.A. Martin, and D. Manski, "Optimization of the propulsion cycles for advanced shuttles part 1: Propulsion mass model methodology", AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Vol. 25, Monterey, CA. 1989 July 10-12, pp.1-16.
[2] J.A. Martin, and D. Manski, "Optimization of the propulsion cycles for advanced shuttles part 2: Performance model methodology", AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Vol. 26, Orlando, FL. 1990 July 16-18, pp. 1-15.
[3] C. Goertz, "A modular method for the analysis of liquid rocket engine cycles", AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Vol. 31, San Diego, CA. 1995 July 10-12, pp.1-10.
[4] M. Mahmoudian, A. Toloei, and H. Ghassemi, Conceptual design of cryogenic liquid propellant engines using liquied oxygen-kerosene, (Master’s Thesis), Faculty of New Technologies, Shahid Beheshti University, Tehran, 2010 (in Persian).
[5] M. Nosratollahi, and A.H. Adami, "Multidisciplinary conceptual design optimization of monopropellant propulsion system of nanosatellite", Space Science and Technology, Vol. 3, No. 4, 2011, pp. 11-23.
[6] J. Vandamme, Assisted-launch performance analysis: Using trajectory and vehicle optimiz-ation, (Master’s Thesis), Faculty of Aerospace Engineering, Delft University of Technology, Delft, 2012.
[7] M. Khorasani zadeh, N. Fouladi, and M. Bazazzadeh, "Development of an algorithm for conceptual design of cryogenic rocket engines", (Master’s Thesis), Faculty of Mechanical Engineering, Malek Ashtar University of Technology, Isfahan, 2012 (in Persian).
[8] R.R.L. Ernst, and B.T.C. Zandbergen, "Liquid rocket analysis (LiRA): development of the liquid bi-propellant rocket engine design, analysis and optimization tool," (Master’s Thesis), Faculty of Aerospace Engineering, Delft University of Technology, Delf, 2014.

[8] H. Fazeli, H. Naseh, M. Mirshams, and A.B. Novin zadeh, "Comprehensive Pattern in Designing Low-Thrust Space Propulsion Systems", Space Science and Technology, Vol. 7, No. 3, 2014, pp. 9-21.

[10] J. Wink, and et al, "Cryogenic rocket engine development at Delft aerospace rocket engineering", Space Propulsion Conference, Rome, Italy, 2016 May, pp. 1-12.
[11] P. Gaillard, C.L., Touze, L. Matuszewski, and A. Murrone, "Numerical simulation of cryogenic injection in rocket engine combustion chambers", AerospaceLab Journal, Vol. 11, Palaiseau, France, 2016 June, pp. 1-16.
 [12] D. Ramesh, S. Khodadadiyan, and H. Karimi, "Optimization of schematic and parameters of staged combustion launch vehicle liquid engines", Space Science and Technology, Vol. 9, No. 1, 2016, pp. 1-11.
[13] F. A., da Silva Mota, J. N. Hinckel, E. M. Rocco, and H. Schlingloff, "Modeling and analysis of a LOX/Ethanol liquid rocket engine", Journal of Aerospace Technology and Management, Vol. 10, São José dos Campos, 2018 June, pp. 1-17.
[14] A. Abdollahi, M. Bazzazzadeh and E. Valizadeh, "Numerical investigation effect of film cooling with mixed heat transfer in wall temperature of LRE thrust chamber", Mechanic and Aerospace, Vol. 14, No. 3, 2018, pp. 71-82.

[15] A. Edalatpour, F. Ommi, and Z. Saboohi, "Performance analysis of liquid propellant micro_propulsion with liquid oxygen as cryogenic oxidizer", Space Science and Technology, Vol. 12, No. 38, 2019, pp. 23-40.

[16] A.H. Adami, H. Taie, and M. Hozuri, "Evaluation of Three Design approach of a bipropellant propulsion system including multidisciplinary design optimization, Robust and Optimum-Robust", Space Science and Technology, Vol. 12, No. 38, 2019, pp. 41-53.

[17] M.A. Eskandari, H. Karimi, D. Ramesh, and M.R. Alikhani, "Dynamic and non-linear modelling of an expansion cycle rocket engine", Space Science and Technology, Vol. 13, No. 1, 2020, pp. 39-48.

[18] M. Nosratollahi, M. Fatehi, and A.H. Adami, "Design of an upper stage propulsion system by multi objective hybrid PSO", Space Science and Technology, Vol. 13, No. 3, 2020, pp. 1-16.

[19] G.R. Faghani, and M.A. Ranjbar, "Study on the influence of surface roughness on the performance of regenerative cooling in liquid propellant engine Mechanic and Aerospace, Vol. 16, No. 3, 2020, pp. 99-105.
[20] A. Asadollahi, S. Nikaein, and D. Ramesh, "Development and validation of the conceptual design algorithm for expander cycle engines", Journal of Technology in Aerospace Engineering, Vol. 4, No. 3, 2020.
[21] A. Dhara, P.M. Kishan, and V.V. Kannah, "Design of regenerative cooled cryogenic rocket engine", International Journal of Advance Science and Technology, Vol. 29(10S), 2020, pp. 4824-4841.
[22] P. Cui, Q. Li, P. Cheng, and L. Chen, "System scheme design for LOX/LCH4 variable thrust liquid rocket engines using motor pump", Acta Astronautica, 2020, pp. 1-30.
 [23] Gordon, S. and McBride, B.J., "Computer program for calculation of complex chemical equilibrium compositions and applications Vol. i: Analysis", NASA RP-1311, 1994, p. 55.
[24] A. Ponomarenko, Rpa: tool for liquid propellant rocket engine analysis c++ implementation, 2010, p. 23.
[25] "Ecosimpro, system modelling & simulation software", [Internet], Madrid: Empresarios Agrupados Internacional S.A. (EAI), 2015, Available from: https://www.ecosimpro.com/wpcontent/uploads/2015/02/ecosimpro_brochure_presentation_en.pdf
[26] D. Newman, "The rocket", [Internet], Cambridge, Aerospace Education Curriculum, a multi-media introduction to the principles of aerospace engineering, MIT Department of Aeronautics and Astronautics, 1996, Available from: http://web.mit.edu/16.00/ www/aec/ rocket.html
[27] N.S. Seddighi renani, and N. Fouladi, "Developing cryogenic rocket engine design software," (Master’s Thesis), Faculty of Mechanical Engineering, Malek Ashtar University of Technology, Isfahan, 2018. (in Persian).
[28] R.W. Humble, G.N. Henry, and W.J. Larson, Space propulsion analysis and design, United States of America, McGraw-Hill Companies INC, 1997.
[29] B. Zandbergen, Thermal rocket propulsion, 2end Ed., Delft, Delft University of Technology, 2010.
[30] G.P. Sutton, and O. Biblarz, Rocket propulsion elements, 9th Ed., Canada, John Wiley & Sons INC, 2017.
[31] D.K. Huzel, and D.H. Huang, Design of liquid rocket engines, Washington, tech, rep, NASA, 1971.
[32] W. Ley, K. Wittmann, and W. Hallmann, Handbook of space technology, Canada, John Wiley & Sons, 2009.
[33] D.K. Huzel, and D.H. Huang, Design of liquid Propellant Rocket Engines, Second Ed., Washington, NASA, 1967.
[34] E. Rezaai shib ab bandani, and N. Fouladi, Design Methodizing for Cryogenic Liquid Propellant Rocket Engine Cooling system, (Master’s Thesis), Faculty of Mechanical Engineering, Malek Ashtar University of Technology, Isfahan, 2018. (in Persian)
[35] The ChemTeam, "The Clausius-Clapeyron Equation", [Internet], 2013. Available from: http://www. chemteam. info/GasLaw/Clasius-Clapeyron-Equation.html
[36] Spakovszky, Z.S., "The Clausius-Clapeyron Equation (application of 1st and 2nd laws of thermodynamics)", [Internet], 2013. Available from: http://web.mit. edu/16.unified/www/FALL/thermodynamics/notes/node64 .html
[37] Zandbergen, B.T.C., "Propellant Characteristics", 2010.
[38] Murdock, J.W., Fundamental fluid mechanics for the Practicing Engineer, United States of America, CRC Press, 2018.
[39] National Institute for Standards and Technology, "Nist chemistry webbook–niststandardreference database number 69", [Internet], 2013, Available from: http://webbook.nist.gov/chemistry/
[40] Mc Hugh, B., "Numerical Analysis of Existing Liquid Rocket Engines as a Design Process Starter", AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Vol. 31, San Diego, CA, 1995 July 10-12, pp. 1-13.