نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی هوافضا، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران

2 دانشیار دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

3 دانشجوی دکتری، دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

برای تست زیر سیستم تعیین وکنترل وضعیت یک ماهواره نیاز به داشتن شبیه‌ساز دینامیک وضعیت است، که شبیه‌ساز نیز می‌بایست از لحاظ وضعیتی در شرایط بالانس باشد. اغتشاش‌های وارد بر سیستم بالانس درشبیه‌سازی شامل انحراف‌های بوجود آمده توسط اختلاف بین مرکز-جرم و چرخش و همچنین حرکت دو عملگر ‌افقی است. حرکت دو عملگر افقی، عاملی برای حرکت چرخشی و گردابی شبیه‌ساز می‌شود. در شبیه‌سازی از مدل‌های تجربی، و همچنین برای کنترل سه‌محور از ضرایب کنترلی PID استفاده می‌شود. عملگرهای سیستم بالانس شامل جرم‌های متحرک و چرخ عکس‌العملی به ترتیب، حول محورهای افقی و عمودی نصب می‌شوند. جهت اعتبارسنجی نتایج، یک نمونه‌ی سخت‌افزاری برای تست‌های آزمایشگاهی توسعه داده‌شده است. سخت‌افزار با استفاده از زمان‌ نمونه‌برداری، مدل‌ها و ضرایب تجربی به ترتیب، رول و پیچ به دقت 0.2 و 0.5 درجه در مدت زمان 25 ثانیه می‌رسد که نشان دهنده‌ی دقت مناسبی برای بالانس شدن شبیه‌ساز وضعیت ماهواره‌ی مکعبی است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Design and Implementation of a Balance System for the CubeSat Attitude Determination and Control Tabletop Simulator

نویسندگان [English]

  • Mahdi Rivandi 1
  • Mehran Mirshams 2
  • Mohammad Zarourati 3

1 M.Sc., Department of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, Iran

2 Associate Professor, Department of Aerospace Engineering, K. N. Toosi University of Technology, Thran, Iran

3 Ph.D., Student, Department of Aerospace Engineering, K.N.Toosi University of Technology, Tehran, Iran

چکیده [English]

To test the Attitude Determination and Control Subsystem of a satellite, it is necessary to have an attitude dynamics simulator, and the simulator must be in a balance condition. Disturbances on the balance system in the simulation include deviations caused by the difference between the center of mass and rotation, as well as the movement of two horizontal actuators. The movement of two horizontal actuators is a factor for rotational and vortex motion. In the simulation of experimental models, PID control coefficients are also used to control three axes. The balance system actuators include moving masses and reaction wheel that are installed around the horizontal and vertical axes, respectively. To validate the results, a hardware sample has been developed for laboratory tests. Using the sampling time, models and experimental coefficients, the hardware reaches the accuracy of 0.2 and 0.5 degrees in 25 seconds, respectively, which indicates a suitable accuracy for balancing the simulator of the CubeSat attitude.

کلیدواژه‌ها [English]

  • Balance system
  • Center of mass
  • Center of rotation
  • Mass slider
[1]    H. Taei, "Survey of Hardware-Based Satellite Attitude Dynamics Simulators," Aerospace Science and Technology, vol. 6, no. 2, pp. 87-101, 2017.
[2]    J. S. Young, "Development of an automatic balancing system for a small satellite attitude control simulator," 1, Ed., ed Logan, Utah: UMI, 1998, pp. 52-55.
[3]    S. Chesi, Q. Gong, V. Pellegrini, R. Cristi, and M. Romano, "Automatic mass balancing of a spacecraft three-axis simulator: Analysis and experimentation," Journal of Guidance, Control, and Dynamics, vol. 37, no. 1, pp. 197-206, 2014.
[4]    J. Prado, G. Bisiacchi, L. Reyes, E. Vicente, F. Contreras, M. Mesinas, et al., "Three-axis air-bearing based platform for small satellite attitude determination and control simulation," Journal of Applied Research and Technology, vol. 3, no. 3, pp. 222-237, 2005.
[5]    N. Sajjad, M. Mershams, and s. Jaliian, "Development of MIL and PIL testbed for Student Microsatellite Attitude Control Subsystem," Space Science and Technology, vol. 13, no. 3, pp. 51-62, 2020.
[6]    Mashayekhi Saeedeh, "Automatic Mass Balancing of a Satellite ADCS Subsystem Simulator," M.Sc. Thesis, Faculty of Aerospace Engineering, Khaje Nasir University of Technology, Space Research Lab, 2019.
[7]    F. L. Markley and J. L. Crassidis, Fundamentals of spacecraft attitude determination and control, vol. 1286,NewYork, Springer, 2014.
[8]    R. C. d. Silva, F. C. Guimarães, J. V. L. d. Loiola, R. A. Borges, S. Battistini, and C. Cappelletti, "Tabletop testbed for attitude determination and control of nanosatellites," Journal of Aerospace Engineering, vol. 32, no. 1, 2019.
[9]    K. Hudson, A. Lingenfelter, and J. Hess, Dynamic Mass Balancing of a Spacecraft Test Platform, 2019.
[10]  J. J. Kim and B. N. Agrawal, "Automatic Mass Balancing of Air-Bearing-Based Three-Axis Rotational Spacecraft Simulator," Journal of Guidance, Control, and Dynamics, vol. 32, no. 3, pp. 1005-1017, 2009.
[11]  A. Bahu and D. Modenini, "Automatic mass balancing system for a dynamic CubeSat attitude simulator: development and experimental validation," CEAS Space Journal, vol. 12, pp. 597-611, 2020.
[12] B. Kim, E. Velenis, P. Kriengsiri, and P. Tsiotras, "Designing a low-cost spacecraft simulator," IEEE Control Systems Magazine, vol. 23, no. 4, pp. 26-37, 2003.
[13] G. Sharifi, M. Mirshams, and H. Shahmohamadi Ousaloo, "Mass properties identification and automatic mass balancing system for satellite attitude dynamics simulator," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 233, no. 3, pp. 896-907, 2019.
[14] S. H. Roknabadi, M. Mirshams, and A. A. Nikkhah, "Design and Manufacturing Steps of a Satellite Reaction Wheel," Journal of Space Science and Technology, vol. 2, no. 4, 2010.