نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 گروه زیست شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران

2 پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری، تهران، ایران

10.30699/jsst.2020.1177

چکیده

بسیاری از اکتشافات فضایی جهت بررسی تغییرات در ساختارهای زیستی و عملکردی موجودات در شرایط ریزجاذبه انجام شده است. امروزه بررسی شرایط ریزجاذبه از دیدگاه نانو مورد توجه پژوهشگران قرار گرفته است. نانوذرات نقره یکی از پرکاربردترین مواد نانویی می‌باشد. در این پژوهش تاثیر ریزجاذبه بر ساختار DNA مورد بررسی قرار گرفت. همچنین اتصال نانوذرات نقره به DNA در گرانش زمین و ریزجاذبه شبیه سازی شده توسط دستگاه‌های مختلف طیف‌سنجی مورد بررسی قرار گرفت. نتایج نشان داد ریزجاذبه موجب تغییر در ساختار DNA می‌گردد و نانوذرات نقره در شرایط ریزجاذبه بیشتر به DNA اتصال می‌یابد. ریزجاذبه موجب تغییر در اندازه و بار سطحی DNA می‌گردد و موجب تغییر ساختار DNA از فرم B به فرم C می‌شود. بنابراین براساس نتایج حاضر، ریزجاذبه به نحوی ساختار DNA را تغییر می‌دهد که میزان تمایل نانوذرات نقره به آن افزایش می‌یابد. این مطالعه می‌تواند افق جدیدی را در پژوهش‌های بیولوژی و بیوفیزیک باز نماید.

کلیدواژه‌ها

عنوان مقاله [English]

The comparison of the binding parameters of silver nanoparticles to DNA in gravity and microgravity conditions

نویسندگان [English]

  • Azadeh Hekmat 1
  • Bahar Hajati 1
  • Zahra Hajebrahimi 2

1 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Aerospace Research Institute, Ministry of Science Research and Technology, Tehran, Iran

چکیده [English]

Amount of space exploration investigation has been done to understand the variations in biological structure and function of living organisms in microgravity condition. Nowadays, the investigation of the microgravity from a nanoscale viewpoint is encouraged. Silver nanoparticles have been involved in large-scale production. In this research, the effect of simulated microgravity on DNA structure was studied. Additionally, the silver nanoparticles binding with DNA molecules under Earth gravity and simulated microgravity conditions by various spectroscopic instruments were investigated. The results displayed that microgravity simulation has created DNA structure variation. The binding affinity of silver nanoparticles to DNA altered. Microgravity initiated an alternation in size and surface charge of DNA and modified DNA structure from B to C-form. Consequently, based on our observation, microgravity can strictly affect the silver nanoparticles-DNA binding interaction. Our observations can open fascinating research lines in biology and biophysics.

کلیدواژه‌ها [English]

  • Silver nanoparticles
  • DNA
  • Microgravity
  • Spectroscopy
  • Zeta potential
  • Dynamic Light Scattering (DLS)
[1]    Nikbakht, V., et al., “The Effects of Simulated Microgravity on Serum Levels of VEGF in Male Wistar Rats,” Journal of Space Science and Technology, Vol. 9, No. 4, 2017, pp. 63-68.
[2]    McPherson, A. and DeLucas, L. J., “Microgravity protein crystallization”. npj Microgravity, Vol. 1,2015, p. 15010.
[3]    Shinde, V., et al., “Simulated microgravity modulates differentiation processes of embryonic stem cells,” Cellular Physiology and Biochemistry, Vol. 38, No. 4, 2016, pp. 1483-1499.
[4]    Blaber, E., Sato, K. and Almeida, E. A., “Stem cell health and tissue regeneration in microgravity,” Stem cells and development, Vol. 23, No. S1, 2014, pp. 73-78.
[5]    Pedroso, M. and Durzan, D., “Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves,” Annals of Botany, Vol. 86, No. 5, 2000, pp. 983-994.
[6]    George, K., et al., “Chromosome aberrations in the blood lymphocytes of astronauts after space flight,” Radiation research, Vol. 156, No. 6, 2001, pp. 731-738.
[7]    Furukawa, T., et al., “Simulated microgravity attenuates myogenic differentiation via epigenetic regulations,” NPJ Microgravity, Vol. 4, 2018, pp.1-8.
[8]    Hekmat, A., Hajebrahimi, Z. and Motamedzade, A., “Structural Changes of Human Serum Albumin (HSA) in Simulated Microgravity,” Protein and peptide letters, Vol. 24, No. 11, 2017, pp. 1030-1039.
[9]    Sharma, R., “Nanotechnology in Space Exploration: Needs and Applications,” Journal of Pure Applied and Industrial Physics, Vol. 2, No. 3A, 2012, pp. 286-335.
[10]  Roco, M. C. and Bainbridge, W. S., “Societal implications of nanoscience and nanotechnology: Maximizing human benefit,” Journal of Nanoparticle Research, Vol. 7, No. 7, 2005, pp. 1-13.
[11]  Hekmat, A., Saboury, A. A. and Divsalar, A., “The effects of silver nanoparticles and doxorubicin combination on DNA structure and its antiproliferative effect against T47D and MCF7 cell lines,” Journal of biomedical nanotechnology, Vol. 8, No. 6, 2012, pp. 968-982.
[12]  Ivask, A., et al., “Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro, ” PloS one, Vol. 9,No. 7, 2014, pp. 1-14.
[13]  Poirier, M., Simard, J. C. and Girard, D., “Silver nanoparticles of 70 nm and 20 nm affect differently the biology of human neutrophils,” Journal of immunotoxicology, Vol. 13, No. 3, 2016, pp. 375-385.
[14] Graf, C., et al., “Shape-Dependent Dissolution and Cellular Uptake of Silver Nanoparticles,” Langmuir, Vol. 34, No. 4, 2018, pp. 1506-1519.
[15] McShan, D., Ray, P.C. and Yu, H., “Molecular toxicity mechanism of nanosilver,” Journal of food and drug analysis, Vol. 22, No. 1, 2014, pp. 116-127.
[16] Sardari, R.R.R., et al., “Toxicological effects of silver nanoparticles inrats,” African Journal of Microbiology Research, Vol. 6, No. 27, 2012, pp. 5587-5593.
[17] Chadha, D., Agarwal, S. and Mehrotra, R., “Investigation of Anti-Cancer Drug Nimustine Interaction with Calf Thymus DNA,” MAPAN, Vol. 31, No. 3, 2016, pp. 169-175.
[18] Shahabadi, N., et al., “DNA binding affinity of a macrocyclic copper (II) complex: Spectroscopic and molecular docking studies,” Nucleosides, Nucleotides and Nucleic Acids, Vol. 36, No. 8, 2017, pp. 497-510.
[19] Maccarrone, M., et al., “The catalytic efficiency of soybean lipoxygenase-1 is enhanced at low gravity,” Biophysical chemistry, Vol. 90, No. 1, 2001, pp. 97-101.
[20] Zubatiuk, T., et al., “Structural waters in the minor and major grooves of DNA-a major factor governing structural adjustments of the A–T mini-helix,” The Journal of Physical Chemistry B, Vol. 119, No. 2, 2015, pp. 381-391.
[21] Nguyen, B., Neidle, S. and Wilson, W. D., “A role for water molecules in DNA− ligand minor groove recognition,” Accounts of chemical research, Vol. 42, No. 1, 2008, pp. 11-21.
[22] Nelson, E. S., Mulugeta, L. and Myers, J. G., “Microgravity-induced fluid shift and ophthalmic changes,” Life, Vol. 4, No. 4, 2014, pp. 621-665.
[23] Agarwal, S., et al., “A structural insight into major groove directed binding of nitrosourea derivative nimustine with DNA: a spectroscopic study,” PloS one, Vol. 9, No. 8, 2014, pp. e104115.
[24] Ray, B., et al., “Structural, conformational and thermodynamic aspects of groove-directed-intercalation of flavopiridol into DNA,” Journal of Biomolecular Structure and Dynamics, Vol. 34, No. 11, 2016, pp. 2518-2535.
[25] Bokma, J. T., Curtis, W. J. Jr, and Blok, J. “CD of the li‐salt of DNA in ethanol/water mixtures: Evidence for the B‐to C‐form transition in solution,” Biopolymers, Vol. 26, No. 6, 1987, pp. 893-909.
[26] Zhang, Z., et al., “Conformational transition of DNA induced by cationic lipid vesicle in acidic solution: spectroscopy investiation,” Biophysical chemistry, Vol. 97, No. 1, 2002, pp. 7-16.
[27] Pramanik, S., et al., “Unraveling the interaction of silver nanoparticles with mammalian and bacterial DNA,” The Journal of Physical Chemistry B, Vol. 120, No. 24, 2016, pp. 5313-5324.
[28] Roy, S., et al., “Interaction studies between biosynthesized silver nanoparticle with calf thymus DNA and cytotoxicity of silver nanoparticles,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 141, 2015, pp. 176-184.
[29] Franklin, R.E. and R.G. Gosling, “The structure of sodium thymonucleate fibres. I. The influence of water content,” Acta Crystallographica, Vol. 6, No. 8-9, 1953, pp. 673-677.
[30] Lee, S.A., Tao, N. J.and Rupprecht, A., “A Raman scattering study of the interactions of DNA with its water of hydration,” Journal of Biomolecular Structure and Dynamics, Vol. 31, No. 11, 2013, pp. 1337-1342.
[31] Wolf, B. and Hanlon, S., “Structural transitions of deoxyribonucleic acid in aqueous electrolyte solutions. II. Role of hydration,” Biochemistry, Vol. 14, No. 8, 1975, pp. 1661-1670.
[32] Dias, R. S., et al., “Coil− globule transition of DNA molecules induced by cationic surfactants: A dynamic light scattering study,” The Journal of Physical Chemistry B, Vol. 109, No. 20, 2005, pp. 10458-10463.
[33] Park, I. K., et al., “Galactosylated chitosan-graft-poly (ethylene glycol) as hepatocyte-targeting DNA carrier,” Journal of Controlled Release, Vol. 76, No. 3, 2001, pp. 349-362.
[34] Veeralakshmi, S., et al., “Single and double chain surfactant–cobalt (III) complexes: the impact of hydrophobicity on the interaction with calf thymus DNA, and their biological activities,” RSC advances, Vol. 5, No. 40, 2015, pp. 31746-31758.
[35] Bhattacharya, S. and Mandal, S. S., “Interaction of surfactants with DNA. Role of hydrophobicity and surface charge on intercalation and DNA melting,” Biochimica et Biophysica Acta (BBA)-Biomembranes, Vol. 1323, No. 1, 1997, pp. 29-44.
[36] Hamelberg, D., Williams, L. D. and Wilson, W. D., “Effect of a neutralized phosphate backbone on the minor groove of B‐DNA: molecular dynamics simulation studies,” Nucleic acids research, Vol. 30, No. 16, 2002, pp. 3615-3623.