نویسنده

پژوهشکده علوم و فناوری فضا، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

در این مقاله سناریوی تصویربرداری به صورت استریو توسط یک ماهواره سنجش از دور بیان می‌شود. سپس به منظور انجام مانورهای مورد نیاز جهت اجرای این سناریو توسط ماهواره، یک سیستم کنترل وضعیت مناسب برای انجام مانورهای زاویة بزرگ و با استفاده از 4 چرخ عکس‌العملی با ساختار هرمی طراحی می‌شود. این سیستم کنترل وضعیت به گونه‌ای طراحی می‌شود که قابلیت نشانه‌روی به سمت مرکز زمین و انجام مانورهای سریع و حفظ وضعیت مناسب ماهواره برای اخذ تصاویر مختلف از یک منطقة مشخص و از زوایای گوناگون را برای ماهواره فراهم آورد. سپس یک بستر سخت‌افزار در حلقه (Hardware in The Loop)جهت تست عملکرد سیستم کنترل وضعیت طراحی شده، ارائه می­شود. این بستر سخت‌افزاری، قابلیت تست الگوریتم­های کنترل وضعیت را به صورت زمان حقیقیو در یک بستر سخت‌افزاری، فراهم می‌آورد. در این بستر، مدل‌سازیبلادرنگ دینامیک ماهواره، اغتشاشات محیطی وارد بر آن و مدل دقیق چرخ‌های عکس‌العملی و حسگرهای ژیروسکوپ در کامپیوتر شبیه­ساز انجام می­شود و عملکرد الگوریتم کنترل وضعیت طراحی شده برای تحقق مأموریت تصویربرداری استریو، به صورت زمان حقیقی بررسی می­شود.

کلیدواژه‌ها

عنوان مقاله [English]

Design and Implementation of Attitude Control Systemof a satellite with Stereo-Imaging Scenario in Hardware in the Loop Test Bed

نویسنده [English]

  • Farhd Fani Saberi

Space Science and Technology Research Institute, Amirkabir University of Technology, Tehran, Iran

چکیده [English]

In this paper, achieving of Stereo-Imaging scenario by a remote sensing satellite will be presented. Then a suitable attitude control system will be designed using 4 reaction wheels with pyramidal structure to fulfill large angle maneuvers of stereo-imaging scenario. The proposed attitude control system provide the satellite with the capability of nadir pointing and large angle maneuvers to take different images of a predefined zone from different point of view. In order to verify the performance of the designed attitude control system, a low-cost real time hardware in the loop test bed will be constructed. The constructed test bed is capable of assessing attitude control algorithms in a real time conditions. In the proposed test bed, accurate and real time modeling of satellite dynamics, space conditions, reaction wheels and gyroscopes will be done by the Simulator computer. Finally, performance of the designed attitude controller to achieve stereo-imaging scenario is investigated by implementing the algorithm in the hardware in the loop test bed in a real time condition.

کلیدواژه‌ها [English]

  • Attitude control
  • satellite
  • Stereo
  • imaging scenario
  • real
  • time simulator
  • Hardware in the loop
  • Reaction wheels 
  1. Bolandi, , Fani Saberi, F. and Vaghei, B.G., “Design of a Supervisory Adaptive Attitude Control (SAAC) System for Stereo-Imagery Satellite Based on Multiple Model Control with Switching,” International Journal of Innovative Computing, Information and Control, Vol. 6, No. 10, 2010, pp. 4675–4692.
  2. Bolandi, H., Fani Saberi, F. and Vaghei, B.G., “Large-Angle Maneuver Attitude Control for a Stereo Imaging Satellite Using Along-Track and Across-Track Maneuvers,” Journal of Space Science & Technology (JSST), Vol. 1, No. 2, Winter 2009, pp. 9-15.
  3. Savopol, F. and Armenakis, C., “Modelling of the IRS-1C Satellite Pan Stereo-Imagery Using the DLT Approach,” ISPRS Commission IV Symposium on GIS, Vol. 32, No. 4, Center for Topographic Information (CTI),1998.
  4. Wang, Q., Yuan, J. and Zhu, Z., “The Application of Error Quaternion and PID Control Method in Earth Observation Satellite's Attitude Control System,” Systems and Control in Aerospace and Astronautics, 2006. ISSCAA 2006, 1st International Symposium on, IEEE, 2005.
  5. Hyochoong, B., Min-Jea, T. and Hyung-Don, C., “Large Angle Attitude Control of Spacecraft with Actuator Saturation,” Control Engineering Practice (Elsevier), 11, No. 9, 2003, pp. 989–997.
  6. Crassidis, J.L., Landis Markley, , Anthony, T.C. andAndrews, S.F., “Nonlinear Predictive Control of Spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 20, No. 6, 1997, pp. 1096–1103.
  7. Jan, Y.W. and Chiou, J.C. “Minimum-Time Spacecraft Maneuver using Sliding-Mode Control,” Acta Astronautica (Elsevier), 54, Issue 1, 2003,pp. 69 – 75.
  8. Bolandi, H. and Fani Saberi, F., “Attitude Control of a Stereo-Imagery satellite with Large-Angle Maneuvers using Reaction Wheels,” 7th International Conference of Aerospace, Sharif University, Tehran, Iran, 2007.
  9. Bolandi, H. and Fani Saberi, F., “Attitude Control of a Stereo-Imagery Satellite with Combination of Along-Track and Across-Track Maneuvers,” 8th International Conference of Aerospace, Maleke Ashtar University, Shahinshahr, Esfehan, Iran, 2008.
  10. Bolandi, H., Fani Saberi, F. and Eslami Mehrjardi, A., “Design of Attitude Control System of a Satellite with Large Angle Maneuvers Considering of Reaction Wheels Model and Restrictions”, Journal of Space Engineering, 1, No. 1, pp. 20, 2011.
  11. Schwartz, J.A., Prck, M.A. and Hall, C.D. “Historical Review of Air-Bearing Spacecraft Simulators,” Journal of Guidance, Control and Dynamics, Vol. 26, No. 4, 2003, pp 513-522.
  12. Bayat, F., Bolandi, H. and Jalali, A.A., “A Heuristic Design Method for Attitude Stabilization of Magnetic Actuated Satellite,” Acta Astronica, Vol. 65, Issue 11-12, 2009, pp 1813-1825.
  13. Fani Saberi, F. “Design and Modeling of a 3-Axis Attitude Determination and Control System for a Satellite to Achieve Imaging Using Combination of Along-Track and Across-Track,” (Thesiss PhD), Department of Electrical Engineering Iran University of Science and Technology, Tehran, Iran, 2011.
  14. Marcel, S., Spacecraft Dynamics and Control, Combridge University Press, 1997.
  15. Bang, H., Tahka, M.J. and Cho, H. D., “Large Angle Attitude Control of Spacecraft with Actuator Saturation,” Control Engineering Practice (Elsevier), 11, Issue 9, 2003, pp. 989–997.
  16. Hablani, H. B., “Sun-tracking Commands and Reaction wheel Sizing with Configuration Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 17, No. 4, 1994, pp.805-814.
  17. Shengmin, Ge, and Cheng, H., “A Comparative Design of Satellite Attitude Control System with Reaction Wheel,” Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems, IEEE, 2006.
  18. Masteron, R.A., Miller, D.W. and Grogan, R.L., “Development and Validation of Reaction Wheel Disturbance Models: Empirical Model,” Journal of Sound and Vibration, 249, No. 3, 2002, pp. 575-598.
  19. Azarnoush, , Fault Diagnosis in Spacecraft Attitude Control System, )Thesis M.Sc.(, Concordia University, Canada, 2005.
  20. Bolandi, H., Haghparast, M., Saberi, F.F., Vaghei B.G. and Smailzadeh, S.M., “On-Board Electronic of Satellite Attitude Determination and Control Subsystem: Design and Test in Hardware in the Loop Test Bed,” The Journal of Institute of Measurement and Control, Vol. 45, No. 5, 2012, pp. 151-157.
  21. RWA-15 High Torque reaction wheel, Datasheet, Space & Navigation Company.