توسعه یک سرویس مکانی تحت وب برای پایش زمانمند وضعیت پوشش گیاهی با استفاده از تصاویر ماهواره ای

نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 گروه سنجش از دور و GIS، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی واحد علوم و تحقیقات

2 استادیار گروه سنجش از دور و GIS، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی واحد علوم و تحقیقات

10.30699/jsst.2021.1226

چکیده

بررسی وضعیت پوشش گیاهی از جمله موضوعات مهم محیط زیستی می­باشد که بهره­گیری از روش­های مرسوم و میدانی در این راستا موجب صرف هزینه و زمان زیادی خواهد شد. فناوری فضایی سنجش از دور و پردازش تصاویر ماهواره­ای راهکاری است که می­تواند اینگونه فرآیندهای دشوار را تسهیل بخشد. در این تحقیق فناوری سنجش از دور با سرویس­های مکانی تحت وب ترکیب خواهند شد تا بتوان بر اساس شاخص پوشش گیاهی در کمترین زمان ممکن تحلیل مناسبی از رشد گیاهان و تغییرات وضعیت آن­ها در اختیار کاربران آنلاین قرار داد. فناوری­های مهم بکارگرفته شده برای این منظور، ENVI IDL، Google Map API، JavaScript و ASP.NET می­باشند. این سرویس با موفقیت پیاده­سازی گردید و برای تصاویر سری زمانی ماهواره لندست اجرا گردید. به منظور ارزیابی کارکرد سرویس در نقاط مختلف و با تعداد تصاویر مختلف منحنی زمانمند شاخص پوشش گیاهی NDVI تهیه گردید. ارزیابی زمانی نیز نشان داد که با افزایش تعداد تصاویر ماهواره­ای، رابطه افزایش زمان پردازش به صورت خطی می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Developing web-based geographical services for temporally vegetation status monitoring using satellite imagery

نویسندگان [English]

  • Mohammad H. Vahidnia 1
  • Hossein Aghamohammadi 2
1 Department of Remote Sensing and GIS, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Department of Remote Sensing and GIS, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Studying vegetation status is one of the most important environmental issues. Using contemporary and field methods in this regard will cost a lot of time and money. Remote sensing technology and satellite image processing is a solution that can facilitate such difficult processes. In this study, remote sensing technology will be integrated with web geographic services to provide users with adequate analysis of the growth of the plants and their changes based on vegetation indices in the shortest possible time. Important technologies used for this purpose are ENVI IDL, Google Map API, JavaScript, and ASP.NET. The service was successfully implemented and was employed for Landsat satellite images. In order to evaluate the performance of the service at different points and with a different number of images, the timeliness of the NDVI vegetation index was prepared. The processing time evaluation also showed that by increasing the number of satellite images the processing time will increase linearly.

کلیدواژه‌ها [English]

  • Land-cover
  • web-based services
  • Remote Sensing
  • image processing
  • Vegetation indices
[1]   Zou, X.K., Zhai, P.M, Relationship Between Vegetation Coverage and Spring Dust Storms Over Northern China. Journal of Geophysical Research, Vol. 1, 2013, 109 D03104.
[2]   Willis, K.S., Remote sensing change detection for ecological monitoring in United States protected areas. Biological Conservation, Vol. 182, 2015, pp. 233-242.
[3]   Pettorelli, N., Vik, O., Mysterud, A., Gaillard, J.M., Tucker, C.J., Stenseth, N.C., Using the satellite – derived NDVI to assess ecological responses to environmental change. Journal of Trends in Ecology and Evolution, Vol. 20, 2005, pp. 503-510.
[4]   Bannari, A., Staenz, K., Haboudane, D., Khurshid, K.S., 2006. Sensitivity Analysis of Chlorophyll Indices to Soil Optical Properties Using Ground-Reflectance Data. IGARSS 2006: pp. 120-123.
[5]   Elvidge, C.D., Chen, Z., Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment, Vol. 54, No. 1,  1995, pp. 38-48.
[6]   Yari, M., Porkhabbaz, F., Tavakkoli, M., and Aghdar, H., Vegetation mapping and monitoring of its change using remote sensing and GIS techniques (Case Study: Behbahan Township). Journal of Geographic Information, Vol. 23, No. 92, 2014, pp. 23-34.
[7]   Rondeaux, G., Steven, M., Baret, F., Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, Vol. 2, 1996, pp. 98-107.
[8]   Darwish, T., Faour, G., Rangeland degradation in two watersheds of Lebnon. Lebanese Science Journal, Vol. 9, 2008, pp. 71-80.
[9]   Huang, C., Asner, C.P., Applications of remote sensing to alien invasive plant Studies. Sensors, Vol. 9, 2013, pp. 4869- 4889.
[10]Ahamed, A., Bolten, J.D., A MODIS-based automated flood monitoring system for southeast asia. International Journal of Applied Earth Observation and Geoinformation, Vol. 61, 2017, pp. 104-117.
[11]Kaivosoja, J., Jackenkroll, M., Linkolehto, R., Weis, M., Gerhards, R., Automatic control of farming operations based on spatial web services. Computers and Electronics in Agriculture, Vol. 100, 2014, pp. 110-115.
[12]Gopinath, G., Free data and open source concept for near real time monitoring of vegetation health of Northern Kerala, India. Aquatic Procedia, Vol. 4, 2015, pp. 1461-1468.
[13]Gopinath, G., Ambili, G.K., Gregory, S.J., Anusha, C.K., Drought risk mapping of south-western state in the Indian peninsula – A web based application. Journal of Environmental Management, Vol. 161, 2015, pp. 453-459.
[14]Astsatryan, H., Hayrapetyan, A., Narsisian, W., Asmaryan, S., Saghatelyan, A., Muradyan, V., Giuliani, G., Guigoz, Y., Ray, N., 2015. An interoperable cloud-based scientific GATEWAY for NDVI time series analysis. Computer Standards & Interfaces, Vol. 41, 2015, pp. 79-84.
[15]Van Leeuwen, W.J.D., Orr, B.J., Marsh, S.E., Herrmann, S.M., Multi-sensor NDVI data continuity: Uncertainties and implications for vegetation monitoring applications. Remote Sensing of Environment, Vol. 100, No. 1, 2006, pp. 67-81.
[16]Lillesand, T.M., Kiefer, R.W., 1999. Remote Sensing and Image Interpretation. JOHN WILEY & SONS Publication.
[17]Chaves, P.S., et al., An Improved Dark-Object Subtraction Technique for Atmospheric Scattering Correction of Multispectral Data. Remote Sensing of Environment, Vol. 24, 1988, pp. 459-479.