نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران

10.22034/jsst.2021.1281

چکیده

نیاز به افزایش قابلیت اطمینان و الزامات ایمنی، باعث شده است روش طراحی مبتنی برقابلیت اطمینان به طور فزاینده‌ای مورد استفاده قرارگیرد. در این پژوهش، طراحی بهینه چندموضوعی مبتنی برقابلیت اطمینان برای سامانه پیشرانش دومولفه‌ای مورد بررسی قرار گرفته است. تابع هدف مسئله کمینه نمودن جرم سیستم و قیود طراحی، ضربه کل و دمای دیواره محفظه‌احتراق است. جهت اعمال عدم قطعیت‌ها و نشان دادن قابلیت اطمینان مسئله نسبت به آن‌ها از روش شبیه‌سازی مونت کارلو استفاده شده‌است. در این مقاله بعد از طراحی سامانه پیشرانش دومولفه‌ای نتایج جرمی، عملکردی و هندسی به تفکیک برای طراحی بهینه، طراحی مبتنی بر قابلیت اطمینان و طراحی بهینه مبتنی بر قابلیت اطمینان بیان می‌گردد. در ادامه با توجه نتایج، مفاهیم و تعاریف روشهای طراحی مورد مقایسه و بحث قرار می گیرد و نشان داده می‌شود که روش طراحی بهینه مبتنی بر قابلیت اطمینان ضمن داشتن جرم مطلوب دارای قابلیت اطمینان لازم است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Multidisciplinary Design of Bipropellant Propulsion System in Three Methods, Optimal Design, Reliability Based Design and Optimal Reliability Based Design

نویسندگان [English]

  • Hojat Taei
  • Amirhossain Adami
  • Mansour Hozuri

Aerospace Department, Malek Ashtar University of Technology, Tehran, Iran

چکیده [English]

The need to improve the reliability and safety requirements, has led to increasingly utilization of reliability based design approaches. In this study, reliability based multidisciplinary design optimization for a bipropellant propulsion system has been investigated. The objective function is minimizing the total system mass and design constraints are the total impulse and the temperature of the wall of the combustion chamber. Monte Carlo simulation methodology is used to apply uncertainties in the problem and to show the reliability of the system under these uncertainties. The mass, functional and geometric results of the bipropellant propulsion system are differentiated for optimal design, reliability based design and optimal reliability based design. Then, considering the results, the concepts and definitions of design methods are compared and discussed and it is shown that the reliability based multidisciplinary optimization while having the desired mass, has high reliability.

کلیدواژه‌ها [English]

  • Multidisciplinary design optimization
  • Bipropellant propulsion system
  • Reliability
  • Uncertainty
[1] S. Batill, , J. Renaud, X. Gu, “Modeling and simulation uncertainty in multidisciplinary design optimization,” In 8th symposium on multidisciplinary analysis and optimization, USA, 2000.
[2] X. Du, C. Wei, “Towards a better understanding of modeling feasibility robustness in engineering design, Journal of Mechanical Design,” Vol. 122, No. 4, pp. 385-394, 2000.
 [3]  X. Du, J. Guo, H. Beeram, “Sequential optimization and reliability assessment for multidisciplinary systems design,” Structural and Multidisciplinary Optimization, Vol. 35, No. 2, pp. 117-130, 2008.
[4] T. Zang, M.J. Hemsch, M. Hilburger, S. Kenny, J. Luckring, “Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles,” 2002.
[5]   R. Balling, J. Sobieszczanski-Sobieski, “An algorithm for solving the system-level problem in multilevel optimization,” In 5th Symposium on Multidisciplinary Analysis and Optimization, p. 4333, 1994.
[6]   Y. Xiong , M. Moscinski, M. Frontera, S. Yin, M. Dede, M. Paradis, “Multidisciplinary Design Optimization of Full Combustor Structure-An Industry Application,” In 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p. 4422, 2004.
[7]   M. Laban, “Multi-disciplinary analysis and optimisation of supersonic transport aircraft wing planforms,” In 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p. 4542, 2004.
[8] Wang. Wenwei, et al, “Multidisciplinary design optimization for front structure of an electric car body-in-white based on improved collaborative optimization method,” International Journal of Automotive Technology, p.1007, 2017.
 [9] Liu. Di, et al, “Simultaneous optimization of heat transfer processes and heat exchanger networks based on the entransy-based power flow method,” International Heat Transfer Conference Digital Library. Begel House Inc., 2018.
[10] Meng, Debiao, et al, “Structural reliability analysis and uncertainties‐based collaborative design and optimization of turbine blades using surrogate model,” Fatigue & Fracture of Engineering Materials & Structures, p.1219, 2019.
[11] J.Ahn, J.H. Kwon, “An efficient strategy for reliability-based multidisciplinary design optimization using BLISS,” Structural and Multidisciplinary Optimization, Vol.31, No. 5, pp. 363-372, 2006.
[12] J. Ahn, J. Lee, S. Kim, J. Kwon, “Sequential reliability analysis framework for multidisciplinary systems,” In 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p. 4517, 2004.
[13] R.Sues, D. Oakley, G. Rhodes, “Multidisciplinary stochastic optimization,” In Engineering Mechanics, pp. 934-937. ASCE, 1995.
[14] R. Sues, M. Cesare, “An innovative framework for reliability-based MDO,” 41st AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, 2000.
[15] P. Koch, , B. Wujek, O. Golovidov, “A multi-stage, parallel implementation of probabilistic design optimization in an MDO framework,” In 8th Symposium on Multidisciplinary Analysis and Optimization, p. 4805, 2000.
[16] D. Padmanabhan, R. Tappeta, S. Batill, “Monte carlo simulation in reliability based optimization applied to multidisciplinary system design,” In 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1503, 2003.
[17] S. Wiley, K. Dommer, L. Mosher, “Design and Development of the MESSENGER Propulsion System,” American Institute of Aeronautics and Astronautics/Society of Automotive Engineers/ American Society of Mechanical Engineers Joint Propulsion Conference, Huntsville, 2003.
[18] P. Erichsen, “Performance Evaluation of Spacecraft Propulsion Systems in Relation to Mission Impulse Requirements,” European Spacecraft Propulsion Conference, p. 189, 1997.
[19] M. Nosratollahi, A. H. Adami-Dehkordi, “Multidisciplinary Conceptual Design Optimization of Monopropellant Propulsion System of Nanosatellite,” Journal of Space Science and Technology (JSST), Vol. 3, No.3-4, p. 20, 2010-2011 (In Persian).
[20] H.Naseh, “Technology Development Trend in Space Launch System Propulsion,” Journal of Technology in Aerospace Engineering, Vol. 1, No.1, p.p.19-29, 2017 (In Persian).
[21] M. kazemi esfeh, M. JozvVaziri, “Developed of an algorithm for design and construction a hot gas thruster and compared with experimental results.” Aerospace Knowledge and Technology Journal, Vol. 6, No.2, p.p.73-86, 2017 (In Persian).
[22] J. G. Michael, Robust Control Systems, Wiley, 2006.
[23] A.Adami, M. Mortazavi, M. Nosratollahi, “A New Approach to Multidisciplinary Design Optimization of Solid Propulsion System Including Heat Transfer and Ablative Cooling,” Journal of Aerospace Technology and Management, p.71 ,2017.
 [24] F. Duddeck, “Multidisciplinary optimization of car bodies,” Structural and Multidisciplinary Optimization, Vol. 35, No. 4, pp. 375-389, 2008.
[25] F. Li, G. Li, G. Sun, Z. Luo, Z. Zhang, “Multi-disciplinary optimization for multi-objective uncertainty design of thin walled beams,” Computers Materials and Continua, Vol. 19, No. 1,p. 37, 2010.
[26] X. Zhendan, A. Elango, J. Fang, “Multidisciplinary design optimization of vehicle weight reduction,” SAE International Journal of Materials and Manufacturing, p.393, 2016.
[27] S. Wei, et al, “Multidisciplinary design optimization of tunnel boring machine considering both structure and control parameters under complex geological conditions,” Structural and Multidisciplinary Optimization, p.1073, 2016.
[28] M. Kokkolaras, P. Papalambros, “On the impact of coupling strength on complex system optimization for single-level formulations,” Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 2, pp. 265-275, 2005.
[29] P. Hyeong-Uk, et al, “Uncertainty-based MDO for aircraft conceptual design,” Aircraft Engineering and Aerospace Technology, An International Journal , 2015.
[30] J. Sobieszczanski-Sobieski, , T.D. Altus, M. Phillips, R. Sandusky, “Bilevel integrated system synthesis for concurrent and distributed processing,” AIAA journal, Vol. 41, No. 10 , 2003.
[31] R. Balling, J. Sobieszczanski-Sobieski, “Optimization of coupled systems: A critical overview of approaches,” AIAA Paper 94-4330, September 1994." Fifth AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City Beach Florida, 1994.
[32] E.J. Cramer, J.E. Dennis, J. Paul, D. Frank, R. Lewis, G.R. Shubin, “Problem formulation for multidisciplinary optimization,” SIAM Journal on Optimization, Vol. 4, No. 4, pp. 754-776, 1994.
[33] M. Lo, “A study on the multidisciplinary design optimization (MDO) using collaborative optimization method,” Shipbuilding and Marine Engineering Department, Pusan National University South Korea, 2000.
[34] Z. L.Huang, Y.S. Zhou, C. Jiang, J. Zheng, X. Han, “Reliability-based multidisciplinary design optimization using incremental shifting vector strategy and its application in electronic product design,” Acta Mechanica Sinica Vol. 34, No. 2 , pp. 285-302, 2018.
[35] S. Batill, J. Renaud, X. Gu, “Modeling and simulation uncertainty in multidisciplinary design optimization,” In 8th symposium on multidisciplinary analysis and optimization, p. 4803, 2000.
[36] J. Liang, Z.P. Mourelatos, J. Tu, “A single-loop method for reliability-based design optimization,” In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 419-430, 2004.
[37] S. Songqing, W.G. Gary, “Reliable space pursuing for reliability-based design optimization with black-box performance functions,” Chinese journal of mechanical engineering, Vol. 22, No. 1, pp. 27-35, 2009.
[38] A. Keane, P. Nair, Computational approaches for aerospace design: the pursuit of excellence, John Wiley & Sons, 2005.
[39] D.P. Landau, K. Binder, A guide to Monte Carlo simulations in statistical physics, Cambridge university press, 2014.
[40] X. Hu, , X. Chen, G.T. Parks, W. Yao, “Review of improved Monte Carlo methods in uncertainty-based design optimization for aerospace vehicles,” Progress in Aerospace Sciences, Vol. 86, pp. 20-27, 2016.
[41] J.F Monahan, “Numerical methods of statistics,” Cambridge University Press, 2011.
[42] E. Vanmarcke, M. Grigoriu, “Stochastic finite element analysis of simple beams,” Journal of engineering mechanics, Vol. 109, No. 5, pp. 1203-1214, 1983.
[43] A.D Adami, M. Mortazavi, M. Nosratollahi. “Multidisciplinary design optimization of hydrogen peroxide monopropellant propulsion system using GA and SQP,” International Journal of Computer Applications, Vol. 113, No. 9, 2015.
[44] R.W. Humble, G.N. Henry, W.J. Larson, Space propulsion analysis and design, Vol. 1, 1995.
[45] K. L. d'Entremont, K.M. Ragsdell, “Design for latitude using TOPT,” In ASME Advances in Design Automation, pp. 265-272 1988.
[46] G.P. Sutton, O. Biblarz, Rocket propulsion elements. 7rd edition, John Wiley & Sons, 2017.
[47] A.D. Adami, M. Mortazavi, M. Nosratollahi, “Heat Transfer Modeling of Bipropellant Thrusters for using in Multidisciplinary Design Optimization Algorithm,” Journal of Fluid Flow, Vol. 2, 2015.
[48] M. Hozuri, Robust multidisciplinary design optimization of a bipropellant propulsion system, Thesis, Malek Ashtar University of Technology, 2018.