اثرات گاز تعادلی بر جریان لایه مرزی آرام ماورای‌صوت حول اجسام متقارن محوری

نویسندگان

1 پژوهشگاه هوافضا

2 دانشکدة مهندسی هوافضا، دانشگاه صنعتی شریف

چکیده

در این مقاله، یک روش محاسباتی سریع با راندمان بالا برای شبیه‌سازی جریان ماورای صوت آرام با دو فرض گاز کامل و گاز تعادلی حول اجسام سرپخ متقارن محوری توسعه داده شده‌است. برای توسعة این الگوریتم، از معادلات لایه مرزی استفاده شده و برای حل آنها از روش ماتریس انتگرالی حول دماغه جسم و قسمت‌های دور از دماغه کمک گرفته شده‌است. روش ماتریس انتگرالی قادر است که با استفاده از تعداد کمی شبکة درون لایه مرزی و با صرف زمان محاسباتی پایین، نتایجی دقیق و هموار ایجاد نماید. روش توسعه یافته به‌دلیل زمان محاسباتی کم، به شدت برای طراحی اجسام بازگشتی ماورای‌صوت مناسب است. در این مقاله، اثرات واکنش‌های شیمیایی تعادلی در معادلات لایه مرزی نیز بررسی شده است. مقایسه نتایج حاصل با داده‌های تجربی بیانگر صحت و دقت نتایج است.

کلیدواژه‌ها


عنوان مقاله [English]

Equilibrium Effects on the Hypersonic Laminar Boundary Layer Flow over Axisymmetric Bodies

نویسندگان [English]

  • R. Kamali Moghadam 1
  • M. R. Salimi 2
1 Aerospace Research Institute, Ministry of Science, Research and Technology
2 Aerospace Engineering Department, Sharif University of Technology
چکیده [English]

An accurate and efficient computational procedure is developed to predict the laminar hypersonic flowfield for both the perfect gas and equilibrium air around the axisymmetric blunt body configurations. To produce this procedure, the boundary layer equations utilize the integral matrix solution algorithm for the blunt nose and after body region by using a space marching technique. The integral matrix procedure enables us to create accurate and smooth results using the minimum grid in the boundary layer and to minimize the computational costs. This algorithm is highly appropriate for the design of hypersonic reentry vehicles. The effects of real gas on the flowfield characteristics are also studied in boundary layer solutions. Comparisons of the results with experimental data demonstrate that accurate solutions are obtained.

کلیدواژه‌ها [English]

  • Hypersonic Flow
  • Equilibrium air
  • Boundary Layer
  • Integral matrix method

[1] Shlichting, H. and Gersten, K., Boundary-Layer Theory, Springer, New York, 2000.

[2] Bartlett E.P. and Kendall R.M., Nonsimilar Solution of the Multicomponent Laminar Boundary Layer by an Integral Matrix Method, NASA CR-1062, Part III, 1967.

[3] Wood, W.A., Eberhardt, S., “Dual-code Solution Strategy for Chemically Reacting Hypersonic Flows,” 33rd Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (AIAA Paper), 1995, pp.95-0158.

[4] Wood, W.A., Thompson, R.A. and Eberhardt, S., “Dual-Code Solution Strategy for Hypersonic Fows,” Journal of Spacecraft and Rockets, Vol. 33, No. 3, 1995, pp. 449–451.

[5] Hejranfar, K., Kamali-Moghadam, R. and Esfahanian, V., “Dual-code Solution Procedure for Efficient Computing Equilibrium Hypersonic Axisymmetric Laminar Flows,” Aerospace Science and Technology, Vol. 12, Issue 2, 2008, pp. 135–149,

[6] Thompson R.A., Zoby E.V., Wurster K.E. and Gnoffo P.A., An Aero Thermodynamic Study of Slender Conical Vehicles, AIAA Paper 87-1475, 1987.

[7] Cheatwood, F.M. and Dejarnette, F.R., “Approximate Viscous Shock Layer Technique for Calculating Hypersonic Flows About Blunt-Nosed Bodies,” Journal of Spacecraft and Rockets, Vol. 31, No. 4, 1994, pp. 621-629.

[8] Noori S., Ghasemloo S. and Mani M., “A New Method for Solution of Viscousshock-Layer Equations,” Proceeding of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, Vol. 224, No.1, 2008, pp.719-729,.

[9] Gnoffo, P.A., Gupta, R.N. and Shinn, J.L., Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Non-equilibrium, NASA TP 2867, 1989.

[10] Buelow, P.E., Tannehill, J.C., Ievalts, J.O. and Lawrence, L.S., “Three Dimensional, Upwind, Parabolized Navier–Stokes Code for Chemically Reacting Flows,” Journal of Thermophysics and Heat Transfer, Vol. 5, No. 3, 1991, pp. 274–283.

[11]Esfahanian, V. and Hejranfar, K., Accuracy of parabolized Navier–Stokes Schemes for Stability Analysis of Hypersonic Axisymmetric Flows, AIAA Journal, Vol. 40, No. 7, 2002, pp. 1311–1322.

[12]Kendall, R. M., Bartlett, E. P., Rindall, R. A. and Moyer, C.B., “An Analysis of Chemically Reacting Boundary Layer,” Issued by Originator as Aerotherm Report No. 66-7, Part 1, 1961.

[13] Kopriva, D.A., “Spectral Solution of the Viscous Blunt Body Problem II: Multidomain Approximation,” ICASE Report No. 94-73, 1994.

[14] Kamali-Moghadam R., Dual-code TLNS-PNS Solution Procedure for Efficient Computing Equilibrium Hypersonic Axisymmetric Flows, (M.Sc. Thesis), The Sharif University of Technology, Tehran, Iran, December 2005.

[15] Tannehill, J.C. and Mugge, T.L., “Improved Curve-Fits for the Thermodynamic Properties of Equilibrium Air Suitable for Numerical Computation Using Time Dependent or Shock-Capturing Methods, NASA CR-2470, 1974.

[16] Srinivasan, S., Tannehill, J.C. and Weilmuenster, K.J., Simplified Curve Fits for the Thermodynamic Properties of Equilibrium Air, NASA RP-1-313, 1986.

[17] Srinivasan, S., Tannehill, J.C. and Weilmuenster, K.J., Simplified Curve Fits for the Transport Properties of Equilibrium Air, NASA RP-1181, 1987.

[18] Bhutta, B.A. and Lewis, C.H., “Comparison of Hypersonic Experiments and PNS Predictions, Part I: Aerothermodynamics,” Journal of Spacecraft and Rockets, Vol. 28, No. 4, 1991, pp. 376-386.

[19] Miller, C.G.,  Micol, J.R. and Gnoffo, P.A., Laminar Heat-Transfer Distribution on Biconics at Incidence in Hypersonic-Hypervelocity Flows, NASA, TP-2213, 1985.