نوع مقاله : مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 استادیار، پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری، تهران، ایران

2 کارشناس ارشد، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

10.30699/jsst.2023.1349

چکیده

این مقاله به ایجاد یک بستر محاسباتی برای مسئله فرمیابی و تحلیل ارتعاشات سازه سه میله ای با پیش تنش محوری پرداخته است. فرایند فرمیابی به واسطه تعیین ماتریسهای اتصال در قالب دو مرحله تعیین مختصات گره ها و چگالی نیروی اعضاء انجام شده است. بطوریکه با سعی و خطا، حالتهای ممکن برای مختصات گره ها و چگالی نیروها صرفا با اطلاع از توپولوژی و نوع اعضاء تا ارضاء الزامات رنک در ماتریسهای چگالی نیرو و تعادل تعیین شده است. سپس معادلات حرکت و تحلیل ارتعاشات آزاد در قالب فرکانسهای طبیعی سیستم با بکارگیری روش المان طیفی و استفاده از شکل مودهای دینامیکی استخراج شده است. شبیه سازیها برای ارتفاعهای مختلف سیستم و نسبت مساحت سطح فوقانی به سطح پایینی ارائه و با روش المان محدود مقایسه شده است. نتایج حاصل در قالب یک مطالعه مقایسه ای برای فرکانسهای طبیعی توپولوژیهای مختلف سازه تنسگریتی سه میله ای، بیانگر میزان قوام فرمهای مختلف سازه برای کاربردهای تک یا چند بخشی میباشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Form-Finding and Free Vibration Analysis of a Class-One Triplex Tensegrity Prism

نویسندگان [English]

  • Milad َAzimi 1
  • Samad Moradi 2

1 Aerospace Research Institute of Iran, Ministry of Science, Technology and Research, Tehran, Iran

2 M.Sc., Islamic Azad University, North Tehran Branch, Tehran, Iran

چکیده [English]

This paper deals with form-finding and free vibration analysis of a pre-stressed class-one triplex tensegrity structure. The form-finding is performed via a two-step procedure, the nodal coordinates connectivity matrix, and structural element force density determination. Accordingly, the possible states for the nodal coordinates and the structural force density of the triplex prism have been determined by trial and error (based on topology and member type knowledge) to satisfy the force density, and equilibrium matrices rank requirements. Based on different structural topologies, the equation of the motion in the frequency domain for free vibration analysis of the system is derived using the spectral element approach and dynamic shape functions. Simulations are provided for different system heights and the top-bottom aria ratios and compared with the FEM. The numerical simulations in the form of a comparative study of the natural frequencies of triplex tensegrity prism with different heights and cross-sections represent the system’s robustness with different topologies for single or multi-stage applications.

کلیدواژه‌ها [English]

  • Class-one tensegrity
  • Form-finding
  • Natural frequency
  • Spectral element
  • Vibration
[1]     A. Tibert and S. Pellegrino, "Deployable tensegrity reflectors for small satellites," J. of Spac. and Rockets, vol. 39, No 5, pp 701-709, 2002.
[2]     C. Sultan and R. Skelton, "Deployment of tensegrity structures," Int. J. of Solids and Structures, vol. 40, No 18, pp. 4637-4657, 2003.
[3]     C. Russell and G. Tibert, "Deployment simulations of inflatable tensegrity structures," Int.J. of space struct., vol. 23, No2, pp. 63-77, 2008.
[4]     H. Furuya, "Concept of deployable tensegrity structures in space application," Int. J. of Space Struc., vol. 7, No 2, pp. 143-151, 1992.
[5]     K. Yildiz and G. A. Lesieutre, "Sizing and prestress optimization of Class-2 tensegrity structures for space boom applications," Eng. with Comp., Vol 38, No 2, pp. 1-14, 2020.
[6]     R. E. Skelton and M. C. De Oliveira, Tensegrity systems vol. 1, New York, Springer, 2009.
[7]     A. M. Popescu, R. Goyal, and M. Majji, "Design and Control of a Tensegrity Torus Spacecraft Composed of Reconfigurable Units," in AIAA Scitech 2021 Forum, p. 1387, 2021.
[8]     X. Li, W. Kong, and J. He, "A task-space form-finding algorithm for tensegrity robots," IEEE Access, vol. 8, pp. 100578-100585, 2020.
[9]     R. Goyal, M. Majji, and R. E. Skelton, "Integrating structure, information architecture and control design: Application to tensegrity systems," Mech. Sys. and Signal Proc., vol. 161, p. 107913, 2021.
[10]   L. Wen, F. Pan, and X. Ding, "Tensegrity metamaterials for soft robotics," Sci. Robot., vol. 5, No 45, p. eabd9158, 2020.
[11]   Y. Lu, X. Xu, and Y. Luo, "Path planning for rolling locomotion of polyhedral tensegrity robots based on dijkstra algorithm," J. of the Int. Association for Shell and Spatial Struc., vol. 60, No 4, pp. 273-286, 2019.
[12]   N. B. Kahla, M. H. E. Ouni, N. B. H. Ali, and R. A. Khan, "Nonlinear Dynamic Response and Stability Analysis of a Tensegrity Bridge to Selected Cable Rupture," Latin American J. of Solids and Struc., vol. 17, 2020.
[13]   D. E. Ingber, N. Wang, and D. Stamenović, "Tensegrity, cellular biophysics, and the mechanics of living systems," Reports on Progress in Physics, vol. 77, No4, p. 046603, 2014.
[14]   W. J. Lewis, Tension structures: form and behaviour: Thomas Telford, 2003.
[15]   Y. Wang and X. Xu, "Prestress design of tensegrity structures using semidefinite programming," Adv. in Civil Eng., vol. 2019, 2019.
[16]   X. Xu, Y. Wang, Y. Luo, and D. Hu, "Topology optimization of tensegrity structures considering buckling constraints," Journal of Structural Engineering, vol. 144, No 10, p. 04018173, 2018.
[17]   Y. Wang, X. Xu, and Y. Luo, "Topology design of general tensegrity with rigid bodies," Int. J. of Solids and Struc., vol. 202, pp. 278-298, 2020.
[18]   A. Pugh, An introduction to tensegrity: University of California Press, 1976.
[19]   A. Tibert and S. Pellegrino, "Review of form-finding methods for tensegrity structures," Int. J. of Space Struc., vol. 18, No 4, pp. 209-223, 2003.
[20]   S. H. Juan and J. M. M. Tur, "Tensegrity frameworks: Static analysis review," Mechanism and Machine Theory, vol. 43, No 7, pp. 859-881, 2008.
[21]   N. Vassart and R. Motro, "Multiparametered formfinding method: application to tensegrity systems," Int. J. of space struc., vol. 14, No 2, pp. 147-154, 1999.
[22]   K. Koohestani, "On the analytical form-finding of tensegrities," Composite Structures, vol. 166, pp. 114-119, 2017.
[23]   X. Xu, Y. Wang, and Y. Luo, "Finding member connectivities and nodal positions of tensegrity structures based on force density method and mixed integer nonlinear programming," Eng. Structures, vol. 166, pp. 240-250, 2018.
[24]   N. B. H. Ali, L. Rhode-Barbarigos, and I. F. Smith, "Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm," Int. J. of Solids and Stru., vol. 48, No 5, pp. 637-647, 2011.
[25]   Y. Chen, Q. Sun, and J. Feng, "Improved form-finding of tensegrity structures using blocks of symmetry-adapted force density matrix," J. of Struc. Eng.g, vol. 144, No 10, p. 04018174, 2018.
[26]   J. Cai, X. Wang, X. Deng, and J. Feng, "Form-finding method for multi-mode tensegrity structures using extended force density method by grouping elements," Composite Structures, vol. 187, pp. 1-9, 2018.
[27]   L.-Y. Zhang, S.-X. Zhu, S.-X. Li, and G.-K. Xu, "Analytical form-finding of tensegrities using determinant of force-density matrix," Composite Structures, vol. 189, pp. 87-98, 2018.
[28]   R. Burkhardt, "The application of nonlinear programming to the design and validation of tensegrity structures with special attention to skew prisms," J. of the Int. Association for Shell and Spatial Struct., vol. 47, No 1, pp. 3-15, 2006.
[29]   H. C. Tran and J. Lee, "Advanced form-finding of tensegrity structures," Computers & structures, vol. 88, No 3-4, pp. 237-246, 2010.
[30]   G. G. Estrada, H.-J. Bungartz, and C. Mohrdieck, "Numerical form-finding of tensegrity structures," Int. J. of Solids and Struct., vol. 43, No 22-23, pp. 6855-6868, 2006.
[31]   L. Zhang, Q. Gao, Y. Liu, and H. Zhang, "An efficient finite element formulation for nonlinear analysis of clustered tensegrity," Eng. Comp Vol 33, No 1, pp 252-273, 2016.
[32]   M. Pagitz and J. M. Tur, "Finite element based form-finding algorithm for tensegrity structures," Int. J. of Solids and Stru., vol. 46, No 17, pp. 3235-3240, 2009.
[33]   S. Yang and C. Sultan, "Free vibration and modal analysis of a tensegrity-membrane system," in ASME 2016 Int. Des. Eng. Tech. Conf. and Com. and Inf. in Eng. Conf., Volume 6: 12th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. Charlotte, North Carolina, USA. August 21–24, 2016. V006T09A023. ASME. https://doi.org/ 10.1115/ DETC2016-59292
[34]   Z. Kan, H. Peng, B. Chen, and W. Zhong, "Nonlinear dynamic and deployment analysis of clustered tensegrity structures using a positional formulation FEM," Composite Structures, vol. 187, pp. 241-258, 2018.
[35]   X. Liu and J. Banerjee, "Free vibration analysis for plates with arbitrary boundary conditions using a novel spectral-dynamic stiffness method," Com. & Stru., vol. 164, pp. 108-126, 2016.
[36]   N. Ashwear and A. Eriksson, "Vibration health monitoring for tensegrity structures," Mech. Sys. and Signal Proc., vol. 85, pp. 625-637, 2017.
[37]   S. Zhang, R. Shen, T. Wang, G. De Roeck, and G. Lombaert, "A two-step FEM-SEM approach for wave propagation analysis in cable structures," Journal of Sound and Vibration, vol. 415, pp. 41-58, 2018.
[38]   H. Sharma, S. Mukherjee, and R. Ganguli, "Stochastic strain and stress computation of a higher-order sandwich beam using hybrid stochastic time domain spectral element method," Mech. of Adv. Mat. and Struc.,Vol 29, No 4, pp. 1-14, 2020.
[39]   J. M. Thompson, "A general theory for the equilibrium and stability of discrete conservative systems," Zeitschrift für angewandte Mathematik und Physik ZAMP, vol. 20, pp. 797-846, 1969.
[40]         H. Murakami and Y. Nishimura, "Initial shape finding and modal analyses of cyclic right-cylindrical tensegrity modules," Comp. & Struc., vol. 79, issue 9, pp. 891-917, 2001.