هدایت صریح نزدیک بهینه مبتنی‌بر همواری دیفرانسیلی

نوع مقاله: مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 صنعتی مالک اشتر - هوافضا

2 دانشگاه صنعتی امیرکبیر

3 دانشگاه صنعتی امیرکبیر دانشگاه اصفهان

چکیده

در این مقاله یک قانون هدایت بهینه مبتنی‌بر همواری دیفرانسیلی برای بیشینه‌سازی سرعت نهایی وسایل پرنده توسعه داده می‌شود. معادلات حرکت با رویکرد همواری دیفرانسیلی کاهش می‌یابد و فرمان‌های هدایت به سینماتیک مسیر وابسته می‌شود. مسیر بهینه توسط الگوریتم ژنتیک با کد حقیقی استخراج می‌شود. برای تولید مسیر برخط، یک مسیر نزدیک بهینه تخمین زده می‌شود. مسیر نزدیک بهینه با حل ژنتیک توافق بسیار خوبی دارد و نسبت به هدایت تناسبی خالص برتری قابل‌توجهی را نشان می‌دهد. مزایایی نظیر تولید مسیر با حداقل پارامترها، قابلیت استفاده در انواع وسایل بازگشتی به جو با مکانیسم‌های کنترلی متفاوت و استقلال از زمان اصابت، این رویکرد را متمایز کرده است. مقاومت این رویکرد نیز با شبیه‌سازی مونت‌کارلو بررسی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Flatness-based Near Optimal Guidance

نویسندگان [English]

  • Reza Esmaelzadeh 1
  • Abolghasem Naghash 2
  • mahdi mortazavi 3
1 Department of Aerospace Engineering, University of MalekeAshtar
3 Aerospace Dep. Amirkabir U of T Mechanical Engineering Dep., Isfahan University
چکیده [English]

An optimal explicit guidance law that maximizes terminal velocity is developed for the reentry of a vehicle to a fixed target. The equations of motion are reduced with differential flatness approach and acceleration commands are related to the parameters of trajectory. An optimal trajectory is determined by solving a real-coded genetic algorithm. For online trajectory generation, optimal trajectory is approximated. The approximated trajectory is compared with the pure proportional navigation and genetic algorithm solutions. The near optimal terminal velocity solution compares very well with these solutions. The approach robustness is examined by Monte Carlo simulation. Other advantages such as trajectory representation with minimum parameters, applicability to any reentry vehicle configuration and any control scheme, and Time-to-Go independency make this guidance approach more favorable.

کلیدواژه‌ها [English]

  • Reentry
  • Explicit guidance
  • Differential flatness
  • Optimal guidance
  • Genetic algorithm

[1]    Eisler, g.r. and Hull, D.G., “guidance Law for Planar Hypersonic Descent to a Point,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 2, 1993, pp. 400-402.

[2]    Eisler, g.r. and Hull, D.G., “guidance law for hypersonic Descent to a Point,” Journal of Guidance, Control, and Dynamics, Vol. 17, No. 4, 1994, pp. 649-654.

[3]    Gräblin, M.H., Telaar J. and Schottle U.M., “ascent and Reentry Guidance Concept Based on nlp-Methods,” Acta Astronautica, Vol. 55, Issues 3-5, 2004, pp. 461-471.

[4]    Alami Naini, A.R. and Roshanian, J., “Developing a Multi-Objective Guidance Scenario for the Entry to the Earth as Atmosphere,” Journal of Space Science and Technology, Vol. 6. No. 4, Winter 1392, pp. 63-62 (In Persian).

[5]    Alikhani, A. and Shamedi, Y., “Guidance and Control for Space Capsule in the Presence of Uncertain Dynamic Parameters During the Atmospheric Entry Phase,” Journal of Space Science and Technology, Vol. 8. No. 3, Fall 1394, pp. 1-13 (In Persian)

[6]    shrivastava, S.K., Bhat, M.S. and Sinha, S.K., “Closed-Loop Guidance of Satellite Launch Vehicle- an Overview,” Journal of the Institute of Engineers, Vol. 66, 1986, pp. 62-76,

[7]    Yakimenko, O.A., “Direct Method for Rapid Prototyping of Near-Optimal Aircraft Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 23, No. 5, 2000, pp. 865-875.

[8]    Lu, P., “Inverse Dynamics Approach to Trajectory Optimization for an Aerospace Plane,” Journal of Guidance, Control and Dynamics, Vol. 16, No. 4, 1993, pp. 726-731.

[9]    Borri, M., Bottasso, C.L. and Montelaghi, F., “Numerical Approach to Flight Dynamics,” Journal of Guidance, Control, and Dynamics, Vol. 20, No. 4, 1997, pp. 742-747.

[10] Kato, O. and Sugiura, I., “An Interpretation of Airplane General Motion and Control as Inverse Problem,” Journal of Guidance, Control, and Dynamics, Vol. 9, No. 2, 1986.

[11] Lane, S.H. and Stengel, R.S., “Flight Control Design Using Non-Linear Inverse Dynamics,” Automatica, Vol. 24, 1988, pp. 471-483.

[12] Sentoh, E. and Bryson, A.E., “Inverse and Optimal Control for Desired Outputs,” Journal of Guidance, Control and Dynamics, Vol. 15, No. 3, 1992, pp. 687-691.

[13] Hough, M.E., “explicit Guidance Along an Optimal Space Curve,” Journal of Guidance, Control and Dynamics, Vol. 12, No. 4, 1982, pp. 495-504.

[14] Leng, G., “Guidance Algorithm Design: a Nonlinear Inverse Approach,” Journal of Guidance, Control and Dynamics, Vol. 21, No. 5, 1998, pp. 742-746.

[15] Lin, C.F. and Tsai, L.L., “Analytical Solution of Optimal Trajectory-Shaping Guidance,” Journal of Guidance, Control and Dynamics, Vol. 10, No. 1, 1987, pp. 61-66.

[16] Sinha, S.K. and Shrivastava, S.K., “optimal Explicit Guidance of Multistage Launch Vehicle AlongThree-Dimensional Trajectory,” Journal of Guidance, Control and Dynamics, Vol. 13, No. 3, 1990, pp. 394-403.

[17] Taranenko, V.T. and Momdzhi, V.G., Direct method of modification in flight dynamic problems, Moscow, Mashinostroenie Press 1986 (In Russian).

[18] Cameron, J.D.M., “explicit Guidance Equations for Maneuvering Re-entry Vehicles,” Proceedings of the IEEE Conference on Decision and Control, New York, USA: IEEE, 1977.

[19] Page, J. and Rogers, R., “Guidance and Control of Maneuvering Reentry Vehicles,” Proceedings of the IEEE Conference on Decision and Control, New York, USA, 1977.

[20] Mortazavi, M., Trajectory Determination Using Inverse Dynamics and Reentry Trajectory Optimization, (PhD Thesis), Moscow Aviation Institute, 2000.

[21] Esmailzade, R., “Explicit Flatness-Based Guidance in Reentry Phase, Journal of Space Science and Technology, Vol. 6, No. 4, Winter 2013, pp. 29-36 ( In Persian)

[22] Naghash, A., Esmaelzadeh, R., Mortazavi, M., Jamilnia, R., “Near Optimal Guidance Law for Descent to a Point Using Inverse Problem Approach,” Aerospace Science and Technology, Vol. 12, No. 3, 2008, pp. 241-247.

[23] Fliess, M., L´evine, J., Martin, P., Rouchon, P., “Flatness and Defect of Nonlinear Systems: Introduction Theory and Examples,” International Journal of Control, Vol. 61, Issue 6, 1995, pp. 1327-1361.

[24] Zerar, M., Cazaurang, F., Zolghadri, A., “LPV Modeling of Atmospheric Re-entry Demonstrator for Guidance Reentry Problem,” Proceedings of the 44th IEEE Conference on Decision and Control, Spain, 2005.

[25] Morio, V., Cazaurang, F., Vernis, P., “Flatness-Based Hypersonic Reentry Guidance of a Lifting-Body Vehicle,” Control Engineering Practice, Vol. 17, Issue 5, 2009, pp. 588-596.

[26] Sira-Ramirez, H., “Soft Landing on a Planet: A Trajectory Planning Approach for the Liouvillian Model, Proceedings of the American Control Conference, San Diego, 1999.

[27] Sun, L.G.W. and Zheng, Z., “Trajectory Optimization for Guided Bombs Based on Differential Flatness,” Proceedings of the Chinese Control and Decision Conference, 2009.

[28] Neckel, T., Talbot, C. and Petit, N., “Collocation and Inversion for a Reentry Optimal Control Problem,” Proceedings of the 5th International Conference on Launcher Tech, 2003.

[29] Archer, S.M. and Sworder, D.D., “Selection of the Guidance Variable for a Re-entry Vehicle,” Journal of Guidance, Control and Dynamics, Vol. 2, No. 2, 1979, pp. 130-138.

[30] Judd, K.B. and McLain, T.W., “spline Based Path Planning for Unmanned Air Vehicles,” AIAA Guidance, Navigation, and Control Conf .& Exhibit, Canada, 2001.

[31] Shen, Z., On-Board Three-Dimensional Constrained Entry Flight Trajectory Generation, (phdThesis), Iowa State University, 2002.

[32] Rogers, D.F. and Adams, J.A., Mathematical elements for computer graphics, New York, McGraw-Hill, 1990.

[33] Nagatani, K., Yosuke, I. and Yutaka, T.,“Sensor-Based Navigation for Car-Like Mobile Robots Based on a Generalized Voronoi Graph,” Advanced Robotics, Vol. 17, Isuue 5, 2003, pp. 385-401.

[34] Zhang, J., Raczkowsky, J. and Herp, A., “Emulation of Spline Curves and its Applications in Robot Motion Control,” Ieee Conf. on Fuzzy Systems, Orlando, FL, USA, 1994.

[35] Myong, H.S. and Kyu, J.L. “Bezier Curve Application in the Shape Optimization for Transonic Airfoils,” the 18TH AIAA Applied Aerodynamics Conf., USA, 2000.

[36] Venkataraman, P., “Unique Solution for Optimal Airfoil Design,” the 15th AIAA Applied Aerodynamics Conf., USA, 1997, pp. 205-215.

[37] Desideri, J.A., Peigin, S. and Timchenko, S., “application of Genetic Algorithms to the Solution of the Space Vehicle Reentry Trajectory Optimization Problem,” INRIA Sophia Antipolice Research Report Vol. 3843, 1999.

[38] Tavakoli, A. and et.al, “Constrained Optimization of Launch Vehicle Trajectory Using Spline and Bezier Curves,” Journal of Space Science and Technology, Vol. 2, No. 4, Summer 2009, pp. 51-60 (In Persian).

[39] Rahman, T., Zhou, H. and Chen, W., “Bézier Approximation Based Inverse Dynamic Guidance for Entry Glide Trajectory, 9th Asian Control Conference (ASCC), 2013.

[40] Betts, J.T., “survey of Numerical Methods for Trajectory Optimization,” Journal of Guidance, Control and Dynamics, Vol. 21, No. 2, 1998, pp. 193-207.

[41] Coverstone-Carroll, V.L., Hartmann, J.W. and Mason, W.J., “Optimal Multi-Objective Low-Thrust Spacecraft Trajectories,” Computer Methods in Applied Mechanics and Engineering, Vol. 186, 2000, pp. 387-402.

[42] Wuerl, A., Carin, T. and Braden, E., “Genetic Algorithm and Calculus of Variations-Based Trajectory Optimization Technique,” Journal of Spacecraft and Rockets, Vol. 40, No. 6, 2003, pp. 882-888.

[43] Yokoyama, N. and Suzuki, S., “Modified Genetic Algorithm for Constrained Trajectory Optimization,” J. of Guidance, Control and Dynamics, Vol. 28, No. 1, 2005, pp. 139-144.

[44] Vafaeesefat, A. and Tabatabaee, H., “Size Optimization of Space Structures Using Genetic Algorithm and Gradient Methods,” Journal of Space Sciences and Technology, Vol. 2, No. 5, 2009, pp. 43-50 (In Persian).

[45] Hashemi Dolabi, M., Daraee, H., Roshanian, J., “Comparison Between Traditional Method (Statistical Method) and Multidisciplinary Optimization Method (AAO) in Designing of a Lightweight Liquid Propellant LV,” Journal of Space Sciences and Technology, Vol. 5, No. 1, 2012, pp. 61-72  (In Persian)

[46] Refan, M., Dameshghi, A., Kamarzarin, M., “Improving DGPS Accuracy Using Predictions of Reference Position Components Error Factors,” Journal of Space Sciences and Technology, Vol. 8, No. 2, 2015, pp. 41-56 (In Persian).

[47] Ramesh, D., Khodadadiyan, S. and Karimi, H., “Optimization of Schematic and Parameters of Staged Combustion Launch Vehicle Liquid Engines,” Journal of Space Sciences and Technology, Vol. 9, No. 1, 2016, pp. 1-11 (In Persian).

[48] Deb, K., multi-objective Optimization Using Evolutionary Algorithms, John-Wiley & Sons, Ltd., New York, 2001.

[49] Gen, M. and Cheng, R., genetic Algorithms & Engineering Optimization, John Wiley & Sons Inc., New York, 2000.

[50] Renders, J.M. and Flasse, S.P., “Hybrid Methods using Genetic Algorithms for Global Optimization,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 26, No. 2, 1996, pp. 243-258.

[51] Esmaelzadeh, R., Naghash, A. and Mortazavi, M., “hybrid Trajectory Optimization using Genetic Algorithms,” Proceedings of the 1st International Conference on Modeling, Simulation and Applied Optimization, Sharjah, U.A.E., 2005.

[52] Fehse, W., Automated Rendezvous and Docking of Spacecraft, Cambridge University Press, 2003.

[53] Ghadiri, H., Esmaelzadeh, R., “Aerospace Simulation Software Validation,” National Conference of Information Retrieval, Islamic Azad University, Amlash, 2013 (In Persian).

[54] Ghadiri, H., Esmaelzadeh, R. and “Concepts, Basics, and Challenges in Aerospace Simulation Software Verification and Validation,” National Conference of Information Retrieval, Islamic Azad University, Amlash, 2013 (In Persian).

[55] Lin, T.F. and et al., “Novel Approach for Maneuvering Reentry Vehicle Design,” Journal of Spacecraft and Rocket, Vol. 40, No. 5, 2003, pp. 605-614.

[56] Shneydor, N.A., Missile Guidance and Pursuit; Kinematics, Dynamics, and Control, Chichester, Horwood publishing Ltd, 1998.