شبیه سازی عددی دو بعدی عایق های حرارتی فناشونده در محفظه احتراق راکت سوخت جامد

نوع مقاله: مقالة‌ تحقیقی‌ (پژوهشی‌)

نویسندگان

1 گروه هوافضا- دانشکده مهندسی مکانیک- دانشگاه تربیت مدرس- تهران

2 دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس

3 دانشکده مهندسی مکانیک، دانشگاه اراک

چکیده

در این مقاله، به بررسی انتقال حرارت و فناشوندگی عایق­ های حرارتی در بدنه­ راکت موتور­های سوخت جامد پرداخته شده است. بنابراین با گردآوری و حل معادلات مربوط به عایق­ های فناشونده، یک برنامه کامپیوتری با استفاده از نرم افزار متلب تهیه شده که قادر است تحت شرایط عملیاتی مختلف، پاسخ­دهی حرارتی عایق­ ها را پیش­ بینی کرده و عملکرد این عایق­ها را با همدیگر مقایسه کند. معادلات انتقال حرارت و جرم در دو بعد در یک جسم جامد در نظر گرفته شده است. برای حل این معادلات از روش حجم محدود و از روش ضمنی برای وابستگی زمانی استفاده شده است. معادله تجزیه که به فرم آرنیوس نوشته شده با استفاده از روش رانگ-کوتا حل شده و چگالی و شار جرمی گاز تولیدی در هر گام زمانی بدست آمده است. همچنین مدلی برای لحاظ نرخ پسروی ارائه شده است. نتایج این تحقیق نشان می­دهد که افزایش کارایی عایق­های حرارتی به واسطه افزایش ضخامت لایه ­ها، گرمای تجزیه و فناشوندگی، شدت واکنش و نیز کاهش ضریب نفوذ گرمایی، چگالی زغال و دمای فناشوندگی حاصل می­شود و بر این اساس یک عایق ایده­ آل نیز معرفی شده است. اعتبار­سنجی مدل با نتایج تجربی رایز در عایق سیلیکافنولیک مقایسه شده، همچنین نتایج تست تجربی انجام شده با در نظر گرفتن عایق کربن ­اپوکسی نشان از انطباق خوب نتایج حاصل از شبیه­ سازی با مشاهدات تجربی می­ باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Two-dimensional numerical simulation of ablative thermal insulators in solid rocket motor combustion chamber

نویسندگان [English]

  • mohammad razmjooei 1
  • Fathollah Ommi 2
  • mohammad shahbazi 3
1 M.Sc, Tarbiat Modares University, Aerospace engineering, Tehran, Iran
2 Tarbiat Modares University
3 Arak University
چکیده [English]

In this paper, the heat transfer and ablation thermal insulators in solid rocket motor are investigated. Therefore, by collecting and solving the thermal ablation equations, a computer program, using MATLAB software, is developed which can predict the thermal response of insulators in different operating conditions and compare the performance of these insulators. The heat and mass transfer equations are considered in two dimensions in a solid body. We used the equations, finite volume method with implicit formulation for time dependency to solve equations. The reaction equation which written in the form of Arrhenius, is solved using Runge-Kutta method, and the density and the flux of the gas produced at each step are obtained. Also we represent a model for the rate of recession.

کلیدواژه‌ها [English]

  • Ablation
  • Insulators
  • Finite volume
  • Two-dimensional
  • heat transfer
  • Decomposition equation
[1]  Yakimov, A.S. "Calculation of Heat Exchange Characteristics Transpiration Cooling Systems." Applied Mechanics & Materials. 2015, 756, 365-371.
[2]  Turner, M. J. “Rocket and Spacecraft Propulsion: Principles, Practice and New Developments”; Springer Science & Business Media. 2008, 3, 153-228.
[3]  Swann, R.T. and C.M. Pittman, Numerical analysis of the transient response of advanced thermal protection systems for atmospheric entry1962: National Aeronautics and Space Administration.
[4]  Chung, B., et al., Heat transfer with ablation in a half space subjected to time-variant heat fluxes. Journal of heat transfer, 1983. 105(1): p. 200-203.
[5]  Blackwell, B., Numerical prediction of one-dimensional ablation using a finite control volume procedure with exponential differencing. Numerical Heat Transfer, Part A: Applications, 1988. 14(1): p. 17-34.
[6]  Ren, F., H. Sun, and G. Deng, A theoretical calculation method of local ablation in region of shock-boundary layer interaction, in 6th Joint Thermophysics and Heat Transfer Conference1994, American Institute of Aeronautics and Astronautics.
[7]  Zien, T.-F. and C.-Y. Wei, Heat transfer in the melt layer of a simple ablation model. Journal of thermophysics and heat transfer, 1999. 13(4): p. 450-459.
[8]  Braga, W.F., M.B. Mantelli, and J.L.F. Azevedo. Approximate analytical solution for onedimensional ablation problem with time-variable heat flux. in AIAA Thermophys. Conference. 2003.
[9]  Kuo, K. K. and Keswani, S. T., "A Comprehensive Theoretical Model for Carbon-Carbon Composite Nozzle Recession," Combustion Science and Technology, Vol. 42, No. 3-4, 1985, pp. 145-164.
[10] Thakre, P. and Yang, V., "Chemical Erosion of CarbonCarbon/Graphite Nozzles in Solid-Propellant Rocket Motors," Journal of Propulsion and Power, Vol. 24, No. 4, 2008, pp. 822-833.
[11] Bianchi, D., Nasuti, F., and Martelli, E., "Coupled Analysis of Flow and Surface Ablation in Carbon-Carbon Rocket Nozzles," Journal of Spacecraft and Rockets, Vol. 46, No. 3, 2009, pp. 492-500.
[12] Bianchi, D. and Nasuti, F., "Analysis of Carbon-Carbon Nozzle Erosion with Shape-Change Effects in Full-Scale Solid-Rocket Motors," Journal of Propulsion and Power, Vol. 28, No. 4, 2012, pp. 820-830.
[13] Riise, J.A.K., Computer Code for Thermal Analysis of Rocket Motors. 2008.
[14] Mohammadiun, H. and M. Mohammadiun, Numerical Modeling of Charring Material Ablation with Considering Chemical-Reaction Effects, Mass Transfer and Surface Heat Transfer. Arabian Journal for Science and Engineering, 2013. 38(9): p. 2533-2543.
[15]  Ghaderi Dehkordi, Y., "Investigation of the Effect of Reinforcement on Thermo-Physical Properties of Ablative Heat Shields,” Vol. 3, No. 2, Journal of Aerospace Research Technology, summer 2010, pp. 55-65.
[16] Turchi, Alessandro. A gas-surface interaction model for the numerical study of rocket nozzle flows over pyrolyzing ablative materials. Diss. PhD thesis, Von Karman Institute for Fluid Dynamics, 2013.
[17] Cross PG, Boyd ID. Two-Dimensional Modeling of Ablation and Pyrolysis with Application to Rocket Nozzles. Journal of Spacecraft and Rockets. 2016 Oct 21;54(1):212-24.
[18] Kato, Sumio, Keiichi Okuyama, Kenta Gibo, Takuma Miyagi, Toshiyuki Suzuki, Kazuhisa Fujita, Takeharu Sakai, Seiji Nishio, and Akihiro Watanabe. "Thermal Response Simulation of Ultra Light Weight Phenolic Carbon Ablator by the Use of the Ablation Analysis Code." TRANSACTIONS of the Japan N Society for Aeronautical and Space Sciences, Aerospace Technology Japan 10, No. ists 28, 2012, pp. 31-39.
[19] Bae, J. "Development of Equilibrium Flow CFD Code Using CEA Database and Prediction on Ablation of SiC Coating Nozzle." PhD diss., Master Dissertation, Seoul National University, 2017.
[20]  Bucchi, Andrea, Claudio Bruno, and Alessandro Congiunti. "Investigation of transpiration cooling performance in LOX/Methane liquid rocket engines." Journal of Spacecraft and Rockets, vol. 42, no. 3, 2005, pp. 476-486,.
[21] Kuzenov, V. V., and S. V. Ryzhkov. "Approximate method for calculating convective heat flux on the surface of bodies of simple geometric shapes." In Journal of Physics: Conference Series, vol. 815, no. 1, p. 012024. IOP Publishing, 2017.
[22] Amirhossein Adami, Mahdi Mortazavi and Mehran Nosratollahi,” Heat Transfer Modeling of Bipropellant Thrusters for using in Multidisciplinary Design Optimization Algorithm”, Journal of Fluid Flow, Heat and Mass Transfer, Volume: 2, 2015.
[23] Kanevce, Ljubica P., Gligor H. Kanevce, and Zore Z. Angelevski. "Comparison of two kinds of experiments for estimation of thermal properties of ablative composite." In Proceedings of the 3º International Conference on Inverse Problems in Engineering, Port Ludlow, USA. 1999.
[24]  Ahmadi, A., "One-dimensional Investigation of Ablatin in The Nozzle Throat", 9th Conference on Fluid Dynamics, 1383.
Bianchi, Daniele. "Modeling of ablation phenomena in space applications." 2008.